login
A087659
a(n) = hypergeom([ -n, (n+4)/2, (n+5)/2], [3, 2], -4).
7
1, 6, 57, 701, 10147, 164317, 2888282, 54047434, 1062530119, 21739192762, 459685114665, 9993072855135, 222421656113435, 5052215132332492, 116808526607319823, 2742986603349411311, 65306671610636210891, 1574090246599071243962, 38361262640988126803839
OFFSET
0,2
COMMENTS
From Bill Gosper, Feb 04 2004: (Start)
A few weeks ago I conjectured that 2 binomial(n,i) (n+2i+3)! / ((i+1)!(i+2)!(n+3)!) is always an integer (summed on i, this gives the current sequence).
This is the special case C(3,i,n-i) of C(m,k,n) := (n+k)!(n+m)!/(n!(n+m+k)!) * Product_{j=1..k} (j - 1)! (n + j m + m)!/((m + j - 1)! (n + j m)!)
which I also conjecture integral.
(End)
From Alec Mihailovs, Feb 04 2004: (Start)
These conjectures are true. Consider the partition p(m,k,n)=(n+m,m,...,m) of n+m*(k+1), where m is repeated k times. It is easy to see that C(m,k,n) equals the dimension of the irreducible representation of S_(n+m*(k+1)) corresponding to p(m,k,n) calculated using hook length formula.
Another formula for C(m,k,n) is ((n+mk+m)!/n!) * Product_{i=0..m-1} i!/((k+i)!(n+k+i+1)!).
(End)
Cloitre has characterized the sequence mods 2 and 3. Remarkably, a(9k+6) mod 3 = 2*A014578(k+1), the binary expansion of the "Thue constant", 110110111110110111110110110..., wherein the 3n-th bit is the complement of the n-th. - Bill Gosper, Mar 19 2004
FORMULA
a(n) = Sum _{i=0..n} 2*C(n,i) * (n+2*i+3)! / ( (i+1)! * (i+2)! * (n+3)! ).
From Vaclav Kotesovec, Jul 05 2018: (Start)
D-finite with Recurrence: (n+2)^2*(n+3)*(3*n - 1)*a(n) = 2*(n+2)*(3*n + 1)*(15*n^2 + 5*n - 2)*a(n-1) - (n-1)*(9*n^3 - 3*n^2 - 4*n - 4)*a(n-2) + (n-3)*(n-2)*(n-1)*(3*n + 2)*a(n-3).
a(n) ~ sqrt(957 + 1/3*(5/2*(9465769685 - 18403*sqrt(5)))^(1/3) + 1/3*(5/2*(9465769685 + 18403*sqrt(5)))^(1/3)) * (66 + 10*2^(2/3)*(73 + sqrt(5))^(1/3) + 3*2^(1/3)*(73 + sqrt(5))^(2/3))^n / (Pi * n^4 * 2^(2*n/3) * (73 + sqrt(5))^(n/3)). (End)
MATHEMATICA
a[n_] := HypergeometricPFQ[{-n, (n + 4)/2, (n + 5)/2}, {3, 2}, -4];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Feb 19 2018 *)
PROG
(PARI) a(n)= sum(i=0, n, 2*binomial(n, i)*(n+2*i+3)!/((i+1)!*(i+2)!*(n+3)!)) \\ Benoit Cloitre
(Sage)
def A087659():
x, y, z, n = 1, 6, 57, 2
while True:
yield x
n += 1
x, y, z = y, z, ((n-1)*(n-2)*(n-3)*(3*n+2)*x-(n-1)*(9*n^3-3*n^2-4*n-4)*y+(2*(3*n+1))*(n+2)*(15*n^2+5*n-2)*z)/((n+3)*(3*n-1)*(n+2)^2)
a = A087659()
[next(a) for i in range(19)] # Peter Luschny, Oct 12 2013
CROSSREFS
Row sums of triangle A087727. Cf. A087660-A087662.
Sequence in context: A141372 A306030 A152170 * A369071 A107718 A308863
KEYWORD
nonn
AUTHOR
Bill Gosper, Sep 26 2003
EXTENSIONS
More terms from Benoit Cloitre, Sep 26 2003
STATUS
approved