login
A087544
a(0) = 1, a(1) = 3, a(n) = smallest prime beginning with the sum of two previous terms.
4
1, 3, 41, 443, 48407, 488503, 5369101, 585760421, 59112952201, 5969871262259, 60289842144607, 6625971340686661, 66862611828312689, 7348858316899935071, 741572092872824776001, 7489209511897247110721, 82307816047700718867221
OFFSET
0,2
LINKS
EXAMPLE
a(3) = 41, a(4) = 443, a(5) = 48407 is the smallest prime beginning with 41+443=484.
MAPLE
A[0]:= 1: A[1]:= 3:
for n from 2 to 20 do
s:= A[n-2]+A[n-1];
for d from 1 do
p:= nextprime(10^d*s);
if floor(p/10^d)=s then A[n]:= p; break fi
od
od:
seq(A[n], n=0..20); # Robert Israel, Dec 10 2018
MATHEMATICA
a[0] = 1; a[1] = 3; a[n_] := a[n] = Module[{s = a[n - 1] + a[n - 2]}, Do[p = 10^d*s; While[! PrimeQ[p], p = NextPrime[p]]; If[Floor[p/10^d] == s, Break[]], {d, 1, 20}]; p]; Array[a, 10, 0] (* Amiram Eldar, Dec 10 2018 from the Maple code *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Sep 13 2003
EXTENSIONS
More terms from Ray Chandler, Sep 23 2003
STATUS
approved