This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087443 Least integer of each prime signature ordered first by sum of exponents and then by least integer value. 6
 1, 2, 4, 6, 8, 12, 30, 16, 24, 36, 60, 210, 32, 48, 72, 120, 180, 420, 2310, 64, 96, 144, 216, 240, 360, 840, 900, 1260, 4620, 30030, 128, 192, 288, 432, 480, 720, 1080, 1680, 1800, 2520, 6300, 9240, 13860, 60060, 510510, 256, 384, 576, 864, 960, 1296, 1440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A025487 in a different order. LINKS Alois P. Heinz, Rows n = 0..26, flattened EXAMPLE 1; 2; 4,6; 8,12,30; 16,24,36,60,210; 32,48,72,120,180,420,2310; 64,96,144,216,240,360,840,900,1260,4620,30030; 128,192,288,432,480,720,1080,1680,1800,2520,6300,9240,13860,60060,510510; MAPLE b:= proc(n, i, l)       `if`(n=0, [mul(ithprime(t)^l[t], t=1..nops(l))],       `if`(i=1, b(0, 0, [l[], 1\$n]), [b(n, i-1, l)[],       `if`(i>n, [], b(n-i, i, [l[], i]))[]]))     end: T:= n-> sort(b(n\$2, []))[]: seq(T(n), n=0..10);  # Alois P. Heinz, Jun 13 2012 MATHEMATICA b[n_, i_, l_] := b[n, i, l] = If[n == 0, Join[{Product[Prime[t]^l[[t]], {t, 1, Length[l]}]}], If[i == 1, b[0, 0, Join[l, Table[1, {n}]]], Join[b[n, i - 1, l], If[i > n, {}, b[n - i, i, Append[l, i]]]]]]; T[n_] := Sort[b[n, n, {}]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 06 2017, after Alois P. Heinz *) CROSSREFS Cf. A025487, A036035, A059901, A063008, A077569, A074140 (row sums). Sequence in context: A131885 A173941 A194406 * A036035 A063008 A059901 Adjacent sequences:  A087440 A087441 A087442 * A087444 A087445 A087446 KEYWORD nonn,tabf AUTHOR Ray Chandler, Sep 04 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 16:14 EDT 2018. Contains 316236 sequences. (Running on oeis4.)