This site is supported by donations to The OEIS Foundation. Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087412 a(n) is the number of solutions to x^3 + y^3 == 1 (mod n). 4
 1, 2, 3, 4, 5, 6, 6, 8, 18, 10, 11, 12, 6, 12, 15, 16, 17, 36, 24, 20, 18, 22, 23, 24, 25, 12, 54, 24, 29, 30, 33, 32, 33, 34, 30, 72, 24, 48, 18, 40, 41, 36, 33, 44, 90, 46, 47, 48, 42, 50, 51, 24, 53, 108, 55, 48, 72, 58, 59, 60 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..10000 FORMULA From Andrew Howroyd, Jul 17 2018: (Start) a(p^e) = p^e for p prime and p mod 3 = 2. Conjecture: a(3^e) = 2*3^e for e > 1. a(p^e) = p^(e-1)*(p - 1 + Sum_{b=1..p-1} Legendre(12*b^(-1) - 3*b^2, p)) for p prime and p <> 3. The final formula arises from factoring x^3 + y^3 as (x + y)*(x*2 - x*y + y^2), then substituting b = x + y and counting the solutions to the resulting quadratic equation 3*x^2 - 3*b*x + b^2 == b^(-1) (mod p) for each nonzero value of b. (End) MATHEMATICA a[n_] := Module[{v = Table[0, {n}]}, For[i = 0, i <= n-1, i++, v[[Mod[i^3, n] + 1]]++]; Sum[v[[i+1]] v[[Mod[1-i, n] + 1]], {i, 0, n-1}]]; a /@ Range[1, 60] (* Jean-François Alcover, Sep 17 2019, after Andrew Howroyd *) PROG (PARI) a(n) = {nb = 0; for (x = 0, n-1, for (y = 0, n-1, if (Mod(x^3, n) + Mod(y^3, n) == Mod(1, n), nb++); ); ); nb; } \\ Michel Marcus, Aug 06 2013 (PARI) a(n)={my(v=vector(n)); for(i=0, n-1, v[i^3%n + 1]++); sum(i=0, n-1, v[i+1]*v[(1-i)%n + 1])} \\ Andrew Howroyd, Jul 17 2018 CROSSREFS Cf. A087786. Sequence in context: A128559 A122168 A017856 * A024684 A265538 A037850 Adjacent sequences:  A087409 A087410 A087411 * A087413 A087414 A087415 KEYWORD mult,nonn AUTHOR Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 21 2003 EXTENSIONS More terms from Michel Marcus, Aug 06 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 20:44 EST 2019. Contains 329849 sequences. (Running on oeis4.)