login
A087356
Beginning with 2, smallest primes such that a(k)-a(k-1) is a distinct power of 2.
2
2, 3, 5, 13, 17, 8209, 8273, 10321, 10337, 10369, 11393, 34359749761, 34359815297, 34393369729, 34460478593, 34461002881, 34461006977
OFFSET
0,1
COMMENTS
a(20) > 2^20000 if it exists. - Robert Israel, Dec 24 2015
LINKS
EXAMPLE
a(5) = 17, smallest prime of the form 17 + 2^r ( r >3) is r = 13 and a(6)= 8209, a(6) - a(5) = 8192 = 2^13.
MAPLE
A[0]:= 2:
P:= [seq(2^i, i=0..10000)]:
for n from 1 do
for i from 1 to nops(P) do
if isprime(A[n-1]+P[i]) then
A[n]:= A[n-1]+P[i];
P:= subsop(i=NULL, P);
break
fi
od;
if not assigned(A[n]) then break fi;
od:
seq(A[i], i=0..n-1); # Robert Israel, Dec 24 2015
CROSSREFS
Cf. A087357.
Sequence in context: A073919 A162573 A349785 * A281598 A042261 A112596
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 08 2003
EXTENSIONS
More terms from David Wasserman, May 12 2005
STATUS
approved