This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087339 Numbers k such that both the sum of the digits of k and 1 plus the product of its digits are primes. 2
 2, 11, 12, 14, 16, 21, 23, 25, 29, 32, 34, 41, 43, 47, 49, 52, 56, 58, 61, 65, 67, 74, 76, 85, 89, 92, 94, 98, 111, 122, 128, 166, 182, 212, 218, 221, 223, 227, 229, 232, 236, 245, 254, 256, 263, 265, 269, 272, 278, 281, 287, 292, 296, 322, 326, 346, 362, 364, 388 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence is infinite. Proof: (10^p-1)/9 is a term if p is a prime. The sum of the digits = p and the product of digits + 1 = 2. Conjecture: There are infinitely many terms not of the form (10^p-1)/9. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 MATHEMATICA f[n_] := Block[{d = IntegerDigits[n]}, PrimeQ[Plus @@ d] && PrimeQ[1 + Times @@ d]]; Select[ Range[424], f[ # ] & ] Select[Range[400], AllTrue[{Total[IntegerDigits[#]], Times @@ IntegerDigits[ #]+1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 24 2017 *) CROSSREFS Cf. A087340. Sequence in context: A137904 A175414 A059192 * A216213 A160948 A299973 Adjacent sequences:  A087336 A087337 A087338 * A087340 A087341 A087342 KEYWORD base,nonn AUTHOR Amarnath Murthy, Sep 06 2003 EXTENSIONS More terms from Robert G. Wilson v, Sep 07 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 07:12 EDT 2019. Contains 321468 sequences. (Running on oeis4.)