login
A087232
a(n) is the largest odd term in the 3x+1 trajectory initiated at n.
6
1, 1, 5, 1, 5, 5, 17, 1, 17, 5, 17, 5, 13, 17, 53, 1, 17, 17, 29, 5, 21, 17, 53, 5, 29, 13, 3077, 17, 29, 53, 3077, 1, 33, 17, 53, 17, 37, 29, 101, 5, 3077, 21, 65, 17, 45, 53, 3077, 5, 49, 29, 77, 13, 53, 3077, 3077, 17, 65, 29, 101, 53, 61, 3077, 3077, 1, 65, 33, 101, 17, 69
OFFSET
1,3
COMMENTS
a(n)=3077 corresponds to peak=9232.
LINKS
FORMULA
If n = 2^k (for integers k >= 0), a(n) = 1; otherwise a(n) = (A025586(n)-1)/3 =(A056959(n)-1)/3. - Paolo Xausa, Nov 13 2021
MAPLE
a:= proc(n) option remember; `if`(n=1, 1, max(
`if`(n::odd, n, 0), a(`if`(n::even, n/2, 3*n+1))))
end:
seq(a(n), n=1..88); # Alois P. Heinz, Nov 14 2021
MATHEMATICA
c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] ofp[x_] := Part[fpl[x], Flatten[Position[OddQ[fpl[x]], True]]] Table[Max[ofp[w]], {w, 1, 256}]
(* Second program: *)
Array[Max@ Select[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, #, Unequal[#, 1, -1, -10, -34] &, 1, 10^4], OddQ] &, 69] (* Michael De Vlieger, May 15 2017, after Alonso del Arte at A025586 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Sep 18 2003
EXTENSIONS
Name simplified by Paolo Xausa, Nov 13 2021
STATUS
approved