login
A087231
a(n) is the smallest number such that the exponent of p=2 factor in 6*a(n)+4 equals n.
2
1, 4, 6, 2, 26, 10, 106, 42, 426, 170, 1706, 682, 6826, 2730, 27306, 10922, 109226, 43690, 436906, 174762, 1747626, 699050, 6990506, 2796202, 27962026, 11184810, 111848106, 44739242, 447392426, 178956970, 1789569706, 715827882, 7158278826, 2863311530
OFFSET
1,2
FORMULA
For n>2, a(n) = [3/2*2^n - (-2)^n - 2]/3. - Ralf Stephan, May 10 2004
From Colin Barker, Mar 16 2017: (Start)
G.f.: x*(1 + 3*x - 2*x^2 - 16*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n>5.
(End)
EXAMPLE
n = 10: m = 6*170+4 = 1024 = 2^10, so a(10) = 170.
PROG
(PARI) Vec(x*(1 + 3*x - 2*x^2 - 16*x^3 + 16*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)) + O(x^40)) \\ Colin Barker, Mar 16 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Aug 28 2003
STATUS
approved