login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087206 a(n) = 2*a(n-1) + 4*a(n-2); with a(0)=1, a(1)=4. 8
1, 4, 12, 40, 128, 416, 1344, 4352, 14080, 45568, 147456, 477184, 1544192, 4997120, 16171008, 52330496, 169345024, 548012032, 1773404160, 5738856448, 18571329536, 60098084864, 194481487872, 629355315200, 2036636581888 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Binomial transform of A056487. Unsigned version of A152174.

Number of words of length n over the alphabet {1,2,3,4} such that no odd letter is followed by an odd letter. - Armend Shabani, Feb 18 2017

LINKS

Table of n, a(n) for n=0..24.

Jens Christian Claussen, Time-evolution of the Rule 150 cellular automaton activity from a Fibonacci iteration, arXiv:math/0410429 [math.CO], 2004. See Table II, p. 4.

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.

Index entries for linear recurrences with constant coefficients, signature (2,4).

FORMULA

G.f.: (1+2x)/(1-2x-4x^2).

a(n) = (1-sqrt(5))^n*(1/2-3*sqrt(5)/10)+(1+sqrt(5))^n*(1/2+3*sqrt(5)/10).

a(n) = 2^n*Fibonacci(n+2). - Paul Barry, Mar 22 2004

a(n) = ((1+sqrt(5))^n-(1-sqrt(5))^n)/sqrt(80). Offset 2. a(4)=12. - Al Hakanson (hawkuu(AT)gmail.com), Apr 11 2009

G.f.: 1/(-2x-1/(-2x-1)). - Paul Barry, Mar 24 2010

MATHEMATICA

LinearRecurrence[{2, 4}, {1, 4}, 25] (* Jean-François Alcover, Sep 21 2017 *)

CROSSREFS

Cf. A060925, A253064.

Equals (1/2) * A063727(n-1). Cf. A006483.

Sequence in context: A126986 A090576 A152174 * A275863 A289653 A081875

Adjacent sequences:  A087203 A087204 A087205 * A087207 A087208 A087209

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Aug 25 2003

EXTENSIONS

Comment corrected by Philippe Deléham, Nov 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 04:44 EDT 2019. Contains 327995 sequences. (Running on oeis4.)