OFFSET
0,2
COMMENTS
Binomial transform is Fibonacci(n) + Fibonacci(2n+1) = A087124(n).
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-1).
FORMULA
a(2n) = Fibonacci(2n-1), a(2n+1) = Fibonacci(2n+3).
G.f.: (1-x)*(1+3*x+x^2)/((1+x-x^2)*(1-x-x^2)). - Colin Barker, Apr 16 2012
a(n) = 3*a(n-2) - a(n-4) for n > 3. - Wesley Ivan Hurt, Oct 05 2017
MAPLE
with(combinat): A087123:=n->fibonacci(n+1)-(-1)^n*fibonacci(n): seq(A087123(n), n=0..50); # Wesley Ivan Hurt, Oct 05 2017
MATHEMATICA
MapIndexed[#2 - (-1)^#1*#3 & @@ {First@ #2 - 1, Last@ #1, First@ #1} &, Partition[Fibonacci@ Range[0, 36], 2, 1]] (* or *)
CoefficientList[Series[(1 - x) (1 + 3 x + x^2)/((1 + x - x^2) (1 - x - x^2)), {x, 0, 38}], x] (* Michael De Vlieger, Oct 06 2017 *)
PROG
(PARI) a(n) = fibonacci(n+1)-(-1)^n*fibonacci(n); \\ Altug Alkan, Oct 06 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 15 2003
STATUS
approved