This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087018 Row sums of Fibonacci triangle shown below. 0
 1, 3, 16, 123, 1453, 27060, 803383, 38256129, 2932126904, 362464081089, 72358024951979, 23344004888219544, 12176743686773409053, 10272520597198595537175, 14018081932741301581509848 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Thomas Koshy, "Elementary Number Theory with Applications", p. 143. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001, see p. 16. LINKS FORMULA a(n) is asymptotic to (1/2+3/2/sqrt(5))*phi^(n*(n+1)/2) where phi=(1+sqrt(5))/2. - Benoit Cloitre, Oct 19 2003 a(n) = Sum(i=(n(n-1)/2)+1 to n(n+1)/2) fibonacci(i) - Sam Alexander, Oct 19 2003 a(n) = F(T(n)+2) - F(T(n-1)+2) where T(n) = n-th triangular number. a(n) = A000045(A000217(n)+2) - A000045(A000217(n-1)+2). - Jonathan Vos Post, Dec 17 2006 EXAMPLE 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 ... MATHEMATICA Table[Plus@@Fibonacci[Range[((n - 1)^2 + n - 1)/2 + 1, (n^2 + n)/2]], {n, 15}] (* Alonso del Arte, Feb 10 2012 *) CROSSREFS Cf. A000045. Cf. A000217. Sequence in context: A053588 A035352 A159607 * A005119 A190291 A090135 Adjacent sequences:  A087015 A087016 A087017 * A087019 A087020 A087021 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Oct 18 2003 EXTENSIONS More terms from Benoit Cloitre and Ray Chandler, Oct 19 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.