This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086967 Number of distinct zeros of x^5-x-1 mod prime(n). 3
 0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 2, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 0, 0, 0, 2, 1, 3, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 3, 2, 0, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 2, 3, 2, 1, 2, 1, 0, 2, 2, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 3, 1, 3, 1, 3, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS For the prime modulus 19, the polynomial can be factored as (x+6)^2 (x^3+7x^2+13x+10), showing that x=13 is a zero of multiplicity 2. For the prime modulus 151, the polynomial can be factored as (x+9) (x+39)^2 (x^2+64x+61), showing that x=112 is a zero of multiplicity 2. The discriminant of the polynomial is 2869=19*151. - T. D. Noe, Aug 12 2004 LINKS J.-P. Serre, On a theorem of Jordan, Bull. Amer. Math. Soc., 40 (No. 4, 2003), 429-440, see p. 435. MATHEMATICA Table[p=Prime[n]; cnt=0; Do[If[Mod[x^5-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 100}] (from T. D. Noe) CROSSREFS Cf. A086937, A086965, A086966. Sequence in context: A137993 A282778 A059883 * A098490 A247138 A212627 Adjacent sequences:  A086964 A086965 A086966 * A086968 A086969 A086970 KEYWORD nonn AUTHOR N. J. A. Sloane, Sep 24 2003 EXTENSIONS More terms from T. D. Noe, Sep 24 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 12:04 EST 2019. Contains 329979 sequences. (Running on oeis4.)