OFFSET
1,1
COMMENTS
Also the Bell transform of A052849(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
The coefficients of n! * L_n(-2*x,-1), where n! * L_n(-x,-1) are the normalized, unsigned Laguerre polynomials of order -1 of A105278, also known as the Lah polynomials, which are also a shifted version of n! * L_n(-x,1). Cf. p. 8 of the Gross and Matytsin link. - Tom Copeland, Sep 30 2016
LINKS
G. C. Greubel, Rows n=1..100 of the triangle, flattened
D. Gross and A. Matytsin, Instanton induced large N phase transitions in two and four dimensional QCD, arXiv:hep-th/9404004, 1994.
FORMULA
E.g.f.: exp(2*x*y/(1-x)).
From G. C. Greubel, Feb 23 2021: (Start)
Sum_{k=1..n} T(n, k) = 2 * n! * Hypergeometric1F1([1-n], [2], -2) = 2*(n-1)! * LaguerreL(n-1, 1, -2) = A253286(n, 2). (End)
EXAMPLE
Triangle begins:
2;
4, 4;
12, 24, 8;
48, 144, 96, 16;
...
MAPLE
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ...) as column 0.
BellMatrix(n -> 2*(n+1)!, 9); # Peter Luschny, Jan 26 2016
MATHEMATICA
Flatten[Table[n!/k! Binomial[n-1, k-1]2^k, {n, 10}, {k, n}]] (* Harvey P. Dale, May 25 2011 *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[2*(#+1)!&, rows = 12];
Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
PROG
(PARI) for(n=1, 10, for(k=1, n, print1(n!/k!*binomial(n-1, k-1)*2^k, ", "))) \\ G. C. Greubel, May 23 2018
(Magma) [Factorial(n)*Binomial(n-1, k-1)*2^k/Factorial(k): k in [1..n], n in [1..10]]; // G. C. Greubel, May 23 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladeta Jovovic, Sep 24 2003
STATUS
approved