login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086885 Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons. 10

%I

%S 2,3,7,4,13,34,5,21,73,209,6,31,136,501,1546,7,43,229,1045,4051,13327,

%T 8,57,358,1961,9276,37633,130922,9,73,529,3393,19081,93289,394353,

%U 1441729,10,91,748,5509,36046,207775,1047376,4596553,17572114,11,111,1021,8501

%N Lower triangular matrix, read by rows: T(i,j) = number of ways i seats can be occupied by any number k (0<=k<=j<=i) of persons.

%C Compare with A088699. - _Peter Bala_, Sep 17 2008

%C T(m, n) gives the number of matchings in the complete bipartite graph K_{m,n}. - _Eric W. Weisstein_, Apr 25 2017

%H Robert Israel, <a href="/A086885/b086885.txt">Table of n, a(n) for n = 1..10011</a> (rows 1 to 141, flattened)

%H Ed Jones, <a href="https://groups.google.com/group/sci.math/msg/590026edeca21c52">Number of seatings</a>, discussion in newsgroup sci.math, Aug 9, 2003.

%H R. J. Mathar, <a href="/A247158/a247158.pdf">The number of binary nxm matrices with at most k 1's in each row or columns</a>, Table 1.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CompleteBipartiteGraph.html">Complete Bipartite Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F a(n)=T(i, j) with n=(i*(i-1))/2+j; T(i, 1)=i+1, T(i, j)=T(i, j-1)+i*T(i-1, j-1) for j>1

%F The role of seats and persons may be interchanged, so T(i, j)=T(j, i).

%F T(i, j) = j!*LaguerreL(j, i-j, -1). - _Vladeta Jovovic_, Aug 25 2003

%F T(i, j) = Sum_{k=0..j} k!*binomial(i, k)*binomial(j, k). - _Vladeta Jovovic_, Aug 25 2003

%e One person:

%e T(1,1)=a(1)=2: 0,1 (seat empty or occupied);

%e T(2,1)=a(2)=3: 00,10,01 (both seats empty, left seat occupied, right seat occupied).

%e Two persons:

%e T(2,2)=a(3)=7: 00,10,01,20,02,12,21;

%e T(3,2)=a(5)=13: 000,100,010,001,200,020,002,120,102,012,210,201,021.

%e Triangle starts:

%e 2;

%e 3 7;

%e 4 13 34;

%e 5 21 73 209;

%e 6 31 136 501 1546;

%e ...

%p A086885 := proc(n,k)

%p add( binomial(n,j)*binomial(k,j)*j!,j=0..min(n,k)) ;

%p end proc: # _R. J. Mathar_, Dec 19 2014

%t Table[Table[Sum[k! Binomial[n, k] Binomial[j, k], {k, 0, j}], {j, 1, n}], {n, 1, 10}] // Grid (* _Geoffrey Critzer_, Jul 09 2015 *)

%t Table[m! LaguerreL[m, n - m, -1], {n, 10}, {m, n}] // Flatten (* _Eric W. Weisstein_, Apr 25 2017 *)

%o (Sage) flatten([[factorial(k)*gen_laguerre(k, n-k, -1) for k in [1..n]] for n in (1..10)]) # _G. C. Greubel_, Feb 23 2021

%o (Magma) [Factorial(k)*Evaluate(LaguerrePolynomial(k, n-k), -1): k in [1..n], n in [1..10]]; // _G. C. Greubel_, Feb 23 2021

%o (PARI) T(i, j) = j!*pollaguerre(j, i-j, -1); \\ _Michel Marcus_, Feb 23 2021

%Y Diagonal: A002720, first subdiagonal: A000262, 2nd subdiagonal: A052852, 3rd subdiagonal: A062147, 4th subdiagonal: A062266, 5th subdiagonal: A062192, 2nd row/column: A002061. With column 0: A176120.

%K nonn,easy,tabl

%O 1,1

%A _Hugo Pfoertner_, Aug 22 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 18:53 EDT 2021. Contains 343050 sequences. (Running on oeis4.)