This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086873 Triangle read by rows in which row n >= 1 gives coefficients in expansion of the polynomial Sum_{k=1..n} (1/n)*binomial(n,k)*binomial(n,k-1)*x^(2k)*(1+x)^(2n-2k) / x^2 in powers of x. 1
 1, 1, 2, 2, 1, 4, 9, 10, 5, 1, 6, 21, 44, 57, 42, 14, 1, 8, 38, 116, 240, 336, 308, 168, 42, 1, 10, 60, 240, 680, 1392, 2060, 2160, 1530, 660, 132, 1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429, 1, 14, 119, 700, 3045, 10122, 26173, 53048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row n has 2n-1 terms. LINKS C. Coker, Enumerating a class of lattice paths, Discrete Math., 271 (2003), 13-28. EXAMPLE For n=3 the polynomial is 1 + 4x + 9x^2 + 10x^3 + 5x^4.   1;   1,  2,  2;   1,  4,  9,  10,    5;   1,  6, 21,  44,   57,   42,   14;   1,  8, 38, 116,  240,  336,  308,   168,    42;   1, 10, 60, 240,  680, 1392, 2060,  2160,  1530,   660,  132;   1, 12, 87, 430, 1545, 4152, 8449, 13014, 14985, 12540, 7227, 2574, 429; MAPLE j := 0:f := n->sum(binomial(n, k)*binomial(n, k-1)/n*x^(2*k)*(1+x)^(2*n-2*k), k=1..n): for n from 1 to 15 do p := expand(f(n)/x^2):for l from 0 to 2*n-2 do j := j+1: a[j] := coeff(p, x, l):od:od:seq(a[l], l=1..j); # Sascha Kurz PROG (PARI) for(n=1, 8, p=sum(k=1, n, (1/n)*binomial(n, k)*binomial(n, k-1)*x^(2*k)*(1+x)^(2*n-2*k))/x^2; for(i=1, 2*n-1, print1(polcoeff(p, i-1) ", "); ); print; ); \\ Ray Chandler, Sep 17 2003 CROSSREFS A059231 gives row sums. Sequence in context: A295687 A087854 A185041 * A101560 A291260 A218529 Adjacent sequences:  A086870 A086871 A086872 * A086874 A086875 A086876 KEYWORD nonn,easy,tabf AUTHOR N. J. A. Sloane, Sep 16 2003 EXTENSIONS More terms from Vladeta Jovovic and Ray Chandler, Sep 17 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 20 21:16 EST 2019. Contains 320350 sequences. (Running on oeis4.)