Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Apr 14 2018 07:17:20
%S 0,0,0,1,30,360,2970,19845,115668,612360,3018060,14073345,62788770,
%T 270208224,1128426390,4594307445,18302828040,71553216240,275154640632,
%U 1042806816225,3901324324230,14427539010360,52801538445810,191427950399301,688082033693340
%N a(n) = (n-1)*(n-2)*(n-3)*(3*n-10)*3^(n-5)/4.
%D L. Ericson et al., Enumeration of tree properties..., Algorithms Review, 1 (1990), 119-124.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (15,-90,270,-405,243).
%F G.f.: x^4*(15*x+1)/(1-3*x)^5 [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]
%F a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=30, a(n)=15*a(n-1)-90*a(n-2)+ 270*a(n-3)- 405*a(n-4)+243*a(n-5). - _Harvey P. Dale_, May 15 2015
%F a(n) = A036217(n-4)+15*A036217(n-5). - _R. J. Mathar_, Apr 14 2018
%t Table[((n-1)(n-2)(n-3)(3n-10)3^(n-5))/4,{n,30}] (* or *) LinearRecurrence[ {15,-90,270,-405,243},{0,0,0,1,30},30] (* _Harvey P. Dale_, May 15 2015 *)
%K nonn,easy
%O 1,5
%A _N. J. A. Sloane_, Sep 16 2003
%E G.f. proposed by Maksym Voznyy checked and corrected by _R. J. Mathar_, Sep 16 2009.
%E Definition clarified by _Harvey P. Dale_, May 15 2015