login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086855 Number of permutations of length n with exactly 4 rising or falling successions. 3

%I

%S 0,0,0,0,0,2,22,226,2198,22120,236968,2732268,33940644,453148422,

%T 6480322210,98907371822,1605581578202,27631315113916,502618772515748,

%U 9637245372790760,194291040277517688,4109014039030693578,90968013940830446574,2104072961763468757082

%N Number of permutations of length n with exactly 4 rising or falling successions.

%C Permutations of 12...n such that exactly 4 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%H Alois P. Heinz, <a href="/A086855/b086855.txt">Table of n, a(n) for n = 0..200</a>

%H J. Riordan, <a href="http://projecteuclid.org/euclid.aoms/1177700181">A recurrence for permutations without rising or falling successions</a>, Ann. Math. Statist. 36 (1965), 708-710.

%F Coefficient of t^4 in S[n](t) defined in A002464.

%F a(n) ~ 2/3*exp(-2) * n!. - _Vaclav Kotesovec_, Aug 14 2013

%p S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

%p [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

%p -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

%p end:

%p a:= n-> ceil(coeff(S(n), t, 4)):

%p seq (a(n), n=0..25); # _Alois P. Heinz_, Jan 11 2013

%t S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Ceiling[Coefficient[S[n], t, 4]]; Table [a[n], {n, 0, 25}] (* _Jean-Fran├žois Alcover_, Oct 13 2014, after _Alois P. Heinz_ *)

%Y Cf. A002464, A000130, A000349, A001267, A086852, A086853. A diagonal of A001100.

%Y Twice A001268.

%K nonn

%O 0,6

%A _N. J. A. Sloane_, Aug 19 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 13:03 EST 2014. Contains 250359 sequences.