login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086855 Number of permutations of length n with exactly 4 rising or falling successions. 3

%I

%S 0,0,0,0,0,2,22,226,2198,22120,236968,2732268,33940644,453148422,

%T 6480322210,98907371822,1605581578202,27631315113916,502618772515748,

%U 9637245372790760,194291040277517688,4109014039030693578,90968013940830446574,2104072961763468757082

%N Number of permutations of length n with exactly 4 rising or falling successions.

%C Permutations of 12...n such that exactly 4 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

%H Alois P. Heinz, <a href="/A086855/b086855.txt">Table of n, a(n) for n = 0..200</a>

%H J. Riordan, <a href="http://projecteuclid.org/euclid.aoms/1177700181">A recurrence for permutations without rising or falling successions</a>, Ann. Math. Statist. 36 (1965), 708-710.

%F Coefficient of t^4 in S[n](t) defined in A002464.

%F a(n) ~ 2/3*exp(-2) * n!. - _Vaclav Kotesovec_, Aug 14 2013

%p S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

%p [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

%p -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

%p end:

%p a:= n-> ceil(coeff(S(n), t, 4)):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jan 11 2013

%t S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1] - (1-t)*(n-2+3*t)*S[n-2] - (1-t)^2*(n-5+t)*S[n-3] + (1-t)^3*(n-3)*S[n-4]]]; a[n_] := Ceiling[Coefficient[S[n], t, 4]]; Table [a[n], {n, 0, 25}] (* _Jean-Fran├žois Alcover_, Oct 13 2014, after _Alois P. Heinz_ *)

%Y Cf. A002464, A000130, A000349, A001267, A086852, A086853. A diagonal of A001100.

%Y Twice A001268.

%K nonn

%O 0,6

%A _N. J. A. Sloane_, Aug 19 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 03:36 EST 2016. Contains 278838 sequences.