login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086853 Number of permutations of length n with exactly 2 rising or falling successions. 8
0, 0, 0, 2, 10, 48, 256, 1670, 12846, 112820, 1108612, 12032154, 142852450, 1840969784, 25587270600, 381460235918, 6071318154166, 102742200205980, 1841978156709676, 34874169034136930, 695294184953602602, 14560120360421802464, 319510983674891800240 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Permutations of 12...n such that exactly 2 of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

REFERENCES

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

J. Riordan, A recurrence for permutations without rising or falling successions, Ann. Math. Statist. 36 (1965), 708-710.

FORMULA

Coefficient of t^2 in S[n](t) defined in A002464.

Conjecture: (-514*n+2465)*a(n) +2*(257*n^2-955*n-1085)*a(n-1) +(-555*n^2+2483*n-1670)*a(n-2) +16*(-17*n^2+73*n-75)*a(n-3) +(354*n^2+528*n-2299)*a(n-4) +2*(-121*n^2+1045*n-1401)*a(n-5) +3*(67*n-115)*(n-4)*a(n-6)=0. - R. J. Mathar, Jun 06 2013

shorter recurrence: (n-3)*(n-2)*(n-4)^3*a(n) = (n-3)*(n^4-9*n^3+23*n^2-4*n-29)*(n-4)*a(n-1) - (n-1)*(n^4-12*n^3+57*n^2-125*n+104)*(n-4)*a(n-2) - (n-2)*(n-1)*(n^4-15*n^3+83*n^2-198*n+169)*a(n-3) + (n-3)^3*(n-2)^2*(n-1)*a(n-4). - Vaclav Kotesovec, Aug 10 2013

a(n) ~ 2*exp(-2) * n!. - Vaclav Kotesovec, Aug 10 2013

MAPLE

S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

       [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

       -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

    end:

a:= n-> ceil(coeff(S(n), t, 2)):

seq(a(n), n=0..25);  # Alois P. Heinz, Jan 11 2013

MATHEMATICA

s[n_] := s[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*s[n-1] - (1-t)*(n-2+3*t)*s[n-2] - (1-t)^2*(n-5+t)*s[n-3] + (1-t)^3*(n-3)*s[n-4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; a[n_] := t[n, 2]; Table[a[n], {n, 0, 22}] (* Jean-Fran├žois Alcover, Mar 11 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A002464, A000130, A000349, A001267, A086852, A086854. A diagonal of A001100.

Sequence in context: A065982 A114693 A121950 * A036918 A200540 A166922

Adjacent sequences:  A086850 A086851 A086852 * A086854 A086855 A086856

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 00:45 EST 2016. Contains 278959 sequences.