login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086852 Number of permutations of length n with exactly 1 rising or falling succession. 10
0, 0, 2, 4, 10, 40, 230, 1580, 12434, 110320, 1090270, 11876980, 141373610, 1825321016, 25405388150, 379158271420, 6039817462210, 102278890975360, 1834691141852174, 34752142215026180, 693126840194499290, 14519428780464454600, 318705819455462421670 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Permutations of 12...n such that exactly one of the following occur: 12, 23, ..., (n-1)n, 21, 32, ..., n(n-1).

REFERENCES

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

Sergey Kitaev, Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.

J. Riordan, A recurrence for permutations without rising or falling successions, Ann. Math. Statist. 36 (1965), 708-710.

FORMULA

Coefficient of t^1 in S[n](t) defined in A002464.

(3-n)*a(n) +(n+1)*(n-3)*a(n-1) -(n^2-4*n+5)*a(n-2) -(n-1)*(n-5)*a(n-3) +(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jun 06 2013

a(n) ~ 2*sqrt(2*Pi)*n!/exp(2) = 0.678470495... * n!. - Vaclav Kotesovec, Aug 10 2013

MAPLE

S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]

       [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)

       -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))

    end:

a:= n-> coeff(S(n), t, 1):

seq(a(n), n=0..30);  # Alois P. Heinz, Dec 21 2012

MATHEMATICA

S[n_] := S[n] = If[n<4, {1, 1, 2*t, 4*t+2*t^2}[[n+1]], Expand[(n+1-t)*S[n-1]-(1-t)*(n-2+3*t)*S[n-2]-(1-t)^2*(n-5+t)*S[n-3]+(1-t)^3*(n-3)*S[n-4]]]; a[n_] := Coefficient[S[n], t, 1]; Table[a[n], {n, 0, 30}] (* Jean-Fran├žois Alcover, Mar 11 2014, after Alois P. Heinz *)

CROSSREFS

Cf. A002464, A086853, A086854, A000349, A001267.

Twice A000130. A diagonal of A001100.

Sequence in context: A108801 A193675 A111022 * A084737 A153757 A159860

Adjacent sequences:  A086849 A086850 A086851 * A086853 A086854 A086855

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 06:58 EST 2016. Contains 278775 sequences.