login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of n X n matrices on n^2 distinct symbols modulo rotations and reflections.
2

%I #12 May 01 2017 22:03:01

%S 1,3,45360,2615348736000,1938901255416373248000000,

%T 46499165848737652183499931018854400000000,

%U 76035233004283445109031520415161922110944103922401280000000000

%N Number of n X n matrices on n^2 distinct symbols modulo rotations and reflections.

%C Also the number of distinct adjacency matrices on the n X n grid graph P_n x P_n. - _Eric W. Weisstein_, May 01 2017

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AdjacencyMatrix.html">Adjacency Matrix</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SquareMatrix.html">Square Matrix</a>

%F a(n) = (n^2)!/8, n>1. - _Vladeta Jovovic_, Aug 10 2003

%t Table[Piecewise[{{1, n == 1}}, (n^2)!/8], {n, 7}]

%Y Cf. A087074.

%K nonn,easy

%O 1,2

%A _Eric W. Weisstein_, Aug 08 2003

%E More terms from _Sam Alexander_, Feb 27 2004