login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086747 Baum-Sweet sequence: a(n) = 1 if binary representation of n contains no block of consecutive zeros of odd length; otherwise a(n) = 0. 8
1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

It appears that the positions of 1's are given by sequence A060142. - R. J. Mathar, Apr 19 2013

This follows the definition of the sequence: 4x appends an even number of zeros, while 2x+1 appends a 1. - Charles R Greathouse IV, Oct 21 2013

REFERENCES

J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 157.

LINKS

Table of n, a(n) for n=0..104.

Eric Weisstein's World of Mathematics, Baum-Sweet Sequence

Wikipedia, Baum-Sweet Sequence

J. Winter, M. M. Bonsangue and J. J. M. M. Rutten, Context-free coalgebras, 2013.

MAPLE

isNotA086747 := proc(n)

    local csl, b, i ;

    csl := 0 ;

    b := convert(n, base, 2) ;

    for i from 1 to nops(b) do

        if op(i, b) = 1 then

            if type(csl, 'odd') then

                return true ;

            end if;

            csl := 0 ;

        else

            csl := csl+1 ;

        end if;

    end do:

    type(csl, 'odd') ;

end proc:

A086747 := proc(n)

    if isNotA086747(n) then

        0;

    else

        1;

    end if;

end proc: # R. J. Mathar, Apr 19 2013

MATHEMATICA

Contribution from Robert G. Wilson v, May 03 2010: (Start)

a[n_] := Block[{b = Plus @@ Union@ Mod[ Length@# & /@ Select[ Union@ Split@ IntegerDigits[n, 2], MemberQ[ #, 0] &], 2]}, If[b == 0, 1, 0]]; a[0] = 1; Table[a@n, {n, 0, 104}]

(* Or *) a[0] = 1; a[1] = 1; a[n_] := a[n] = Block[{k = n}, While[ Mod[k, 4] == 0, k /= 4]; If[ OddQ@k, a[(k - 1)/2], 0]]; Table[a@n, {n, 0, 104}]

(* Or *) Nest[Partition[ Flatten[ # /. {{0, 0} -> {0, 0, 0, 0}, {0, 1} -> {1, 0, 0, 1}, {1, 0} -> {0, 1, 0, 0}, {1, 1} -> {1, 1, 0, 1}}], 2] &, {1, 1}, 6] // Flatten (End)

PROG

(PARI) a(n)=if(n<3, n<2, if(n%2, a(n\2), n%4==0&&a(n/4))) \\ Charles R Greathouse IV, Oct 21 2013

CROSSREFS

Cf. A037011.

Sequence in context: A141736 A134842 A167753 * A141727 A123594 A145006

Adjacent sequences:  A086744 A086745 A086746 * A086748 A086749 A086750

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Sep 12 2003

EXTENSIONS

More terms from Ray Chandler, Sep 14 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 03:02 EST 2014. Contains 252240 sequences.