login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086702 Decimal expansion of Lévy's constant. 7
3, 2, 7, 5, 8, 2, 2, 9, 1, 8, 7, 2, 1, 8, 1, 1, 1, 5, 9, 7, 8, 7, 6, 8, 1, 8, 8, 2, 4, 5, 3, 8, 4, 3, 8, 6, 3, 6, 0, 8, 4, 7, 5, 5, 2, 5, 9, 8, 2, 3, 7, 4, 1, 4, 9, 4, 0, 5, 1, 9, 8, 9, 2, 4, 1, 9, 0, 7, 2, 3, 2, 1, 5, 6, 4, 4, 9, 6, 0, 3, 5, 5, 1, 8, 1, 2, 7, 7, 5, 4, 0, 4, 7, 9, 1, 7, 4, 5, 2, 9, 4, 9, 2, 6, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Let P(k)/Q(k) denote the k-th convergent of x. Then for almost all real values of x where x satifies 0<x<1, lim(k->∞,Q(k)^(1/k)) = L. - Edited by Jared Kish, Oct 17 2014

REFERENCES

S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 59-65

Paul Lévy, Théorie de l'addition des variables aléatoires, 2nd. ed., Editions Jacques Gabay, chap IX, pp. 316-320

LINKS

Table of n, a(n) for n=1..105.

S. R. Finch, Khintchine's constant.

Simon Plouffe, The Levy constant

Eric Weisstein's World of Mathematics, Levy Constant

Eric Weisstein's World of Mathematics, Khinchin Constant

Eric Weisstein's World of Mathematics, Continued Fraction

FORMULA

L = exp(Pi^2/12/log(2))

EXAMPLE

3.27582291872181115978768...

MATHEMATICA

RealDigits[E^(Pi^2/Log[4096]), 10, 111][[1]] (* Robert G. Wilson v, May 19 2004 *)

CROSSREFS

Cf. A002210.

Sequence in context: A059894 A126314 A200714 * A156140 A069888 A073281

Adjacent sequences:  A086699 A086700 A086701 * A086703 A086704 A086705

KEYWORD

cons,nonn,changed

AUTHOR

Benoit Cloitre, Jul 28 2003

EXTENSIONS

Offset corrected by R. J. Mathar, Feb 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 23 08:59 EDT 2014. Contains 248443 sequences.