login
A086660
Stirling transform of Hermite numbers: Sum_{k=0..n} Stirling2(n,k) * HermiteH(k,0).
2
1, 0, -2, -6, -2, 90, 598, 1554, -10082, -164310, -1101242, -1496286, 64767118, 965876730, 7104497398, 57428274, -856472198402, -14195316779190, -122409183339482, 25272908324034, 21770258523698158
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(-(exp(x)-1)^2).
MATHEMATICA
Table[Sum[StirlingS2[n, k]HermiteH[k, 0], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Mar 24 2013 *)
With[{nmax = 50}, CoefficientList[Series[Exp[-(Exp[x] - 1)^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jul 12 2018 *)
PROG
(PARI) x='x+O('x^50); Vec(serlaplace(exp(-(exp(x)-1)^2))) \\ G. C. Greubel, Jul 12 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(-(Exp(x)-1)^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 12 2018
CROSSREFS
Sequence in context: A363395 A005729 A271504 * A271503 A102068 A351709
KEYWORD
sign
AUTHOR
Vladeta Jovovic, Sep 12 2003
STATUS
approved