login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086618 a(n) = Sum{k=0..n} binomial(n,k)^2*C(k), where C() = A000108() are the Catalan numbers. 9
1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 2535078, 18758265, 141254655, 1079364105, 8350678170, 65298467487, 515349097713, 4100346740511, 32858696386766, 265001681344569 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Main diagonal of square table A086617 of coefficients, T(n,k), of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/[(1-x)(1-y)] + xy*f(x,y)^2.

a(n) is the number of permutations of length 2n which are invariant under the reverse-complement map and have no decreasing subsequences of length 4. - Eric S. Egge, Oct 21 2008

In 2012, Zhi-Wei Sun proved that for any odd prime p we have the congruence a(1) + ... + a(p-1) == 0 (mod p^2). - Zhi-Wei Sun, Aug 22 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

D. Daly and L. Pudwell, Pattern avoidance in rook monoids, 2013.

T. Denton, Algebraic and Affine Pattern Avoidance, arXiv preprint arXiv:1303.3767 [math.CO], 2013.

Z.-W. Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011. See (1.22).

Z.-W. Sun, On sums of Apery polynomials and related congruences, J. Number Theory 132(2012), 2673-2699.

FORMULA

Recurrence: (n+3)^2*(4*n+7)*a(n+2) = 2*(20*n^3+117*n^2+220*n+135)*a(n+1) - 9*(n+1)^2*(4*n+11)*a(n). - Vaclav Kotesovec, Sep 11 2012

a(n) ~ 3^(5/2)/(8*Pi) * 9^n/n^2. - Vaclav Kotesovec, Oct 06 2012

G.f.: (1-(1-9*x)^(1/3)*hypergeom([1/3,1/3],[1],-27*x*(1-x)^2/(1-9*x)^2))/(6*x). - Mark van Hoeij, May 02 2013

a(n) = hypergeom([1/2,-n,-n], [1,2], 4). - Vladimir Reshetnikov, Oct 03 2016

EXAMPLE

a(5) = 1118 = 1*1^2 + 1*5^2 + 2*10^2 + 5*10^2 + 14*5^2 + 42*1^2.

MATHEMATICA

Flatten[{1, RecurrenceTable[{(n+3)^2*(4*n+7)*a[n+2]==2*(20*n^3+117*n^2+220*n+135)*a[n+1]-9*(n+1)^2*(4*n+11)*a[n], a[1]==2, a[2]==7}, a, {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 11 2012 *)

Table[HypergeometricPFQ[{1/2, -n, -n}, {1, 2}, 4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)

PROG

(PARI) a(n)=sum(k=0, n-1, binomial(n-1, k)^2*binomial(2*k, k)/(k+1)) \\ Charles R Greathouse IV, Sep 12 2012

(PARI) a(n)=sum(k=0, n-1, (4*k+3)*sum(i=0, k, binomial(k, i)^2*binomial(2*i, i)))/3/n^2 \\ Charles R Greathouse IV, Sep 12 2012

CROSSREFS

Cf. A086617 (table), A086615 (antidiagonal sums), A003046 (determinants).

Cf. A000108.

Cf. A228456.

Sequence in context: A055724 A301433 A054727 * A224769 A302285 A249636

Adjacent sequences:  A086615 A086616 A086617 * A086619 A086620 A086621

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 24 2003

EXTENSIONS

Edited by N. J. A. Sloane, Sep 14 2012. The formula in the new definition was first sent in by Michael Somos, Feb 19 2004

Minor edits Vaclav Kotesovec, Mar 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 12:29 EDT 2018. Contains 316360 sequences. (Running on oeis4.)