The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086616 Partial sums of the large Schroeder numbers (A006318). 7
 1, 3, 9, 31, 121, 515, 2321, 10879, 52465, 258563, 1296281, 6589727, 33887465, 175966211, 921353249, 4858956287, 25786112993, 137604139011, 737922992937, 3974647310111, 21493266631001, 116642921832963, 635074797251889, 3467998148181631, 18989465797056721, 104239408386028035 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of triangle A086614. - Paul D. Hanna, Jul 24 2003 Hankel transform is A136577(n+1). - Paul Barry, Jun 03 2009 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009), #09.7.6. FORMULA G.f.: A(x) = 1/(1 - x)^2 + x*A(x)^2. a(1) = 1 and a(n) = n + Sum_{i=1..n-1} a(i)*a(n-i) for n >= 2. - Benoit Cloitre, Mar 16 2004 G.f.: (1 - x - sqrt(1 - 6*x + x^2))/(2*x*(1 - x)). Cf. A001003. - Ralf Stephan, Mar 23 2004 a(n) = Sum_{k=0..n} C(n+k+1, 2*k+1) * A000108(k). - Paul Barry, Jun 03 2009 Recurrence: (n+1)*a(n) = (7*n-2)*a(n-1) - (7*n-5)*a(n-2) + (n-2)*a(n-3). - Vaclav Kotesovec, Oct 14 2012 a(n) ~ sqrt(24 + 17*sqrt(2))*(3 + 2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012 EXAMPLE a(1) = 2 + 1 = 3; a(2) = 3 + 4 + 2 = 9; a(3) = 4 + 10 + 12 + 5 = 31; a(4) = 5 + 20 + 42 + 40 + 14 = 121. MATHEMATICA Table[SeriesCoefficient[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1-x)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (Sage) # Generalized algorithm of L. Seidel def A086616_list(n) :     D = [0]*(n+2); D[1] = 1     b = True; h = 2; R = []     for i in range(2*n) :         if b :             for k in range(h, 0, -1) : D[k] += D[k-1]         else :             for k in range(1, h, 1) : D[k] += D[k-1]             R.append(D[h-1]); h += 1;         b = not b     return R A086616_list(23) # Peter Luschny, Jun 02 2012 (PARI) x='x+O('x^66); Vec((1-x-sqrt(1-6*x+x^2))/(2*x*(1-x))) \\ Joerg Arndt, May 10 2013 CROSSREFS Cf. A086614 (triangle), A086615 (antidiagonal sums). Cf. A006318. Sequence in context: A151037 A066571 A087648 * A040027 A182968 A071603 Adjacent sequences:  A086613 A086614 A086615 * A086617 A086618 A086619 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 24 2003 EXTENSIONS Name changed using a comment of Emeric Deutsch from Dec 20 2004. - Peter Luschny, Jun 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 08:38 EST 2020. Contains 338623 sequences. (Running on oeis4.)