This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086615 Antidiagonal sums of triangle A086614. 9

%I

%S 1,2,4,8,17,38,89,216,539,1374,3562,9360,24871,66706,180340,490912,

%T 1344379,3701158,10237540,28436824,79288843,221836402,622599625,

%U 1752360040,4945087837,13988490338,39658308814,112666081616

%N Antidiagonal sums of triangle A086614.

%C Partial sums of the Motzkin sequence (A001006). - _Emeric Deutsch_, Jul 12 2004

%C a(n) = number of distinct ordered trees obtained by branch-reducing the ordered trees on n+1 edges. - _David Callan_, Oct 24 2004

%C a(n)= the number of consecutive horizontal steps at height 0 of all Motzkin paths from (0,0) to (n,0) starting with a horizontal step. - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007

%C Equals row sums of triangle A136788 - _Gary W. Adamson_, Jan 21 2008

%C The subsequence of prime partial sums of the Motzkin sequence begins: 2, 17, 89, no more through a(27). [From _Jonathan Vos Post_, Feb 11 2010]

%C This sequence (with offset 1 instead of 0) occurs in Section 7 of K. Grygiel, P. Lescanne (2015), see g.f. N. - _N. J. A. Sloane_, Nov 09 2015

%C Also number of plain (untyped) normal forms of lambda-terms (terms that cannot be further beta-reduced.) [Bendkowski et al., 2016]. - _N. J. A. Sloane_, Nov 22 2017

%H Vincenzo Librandi, <a href="/A086615/b086615.txt">Table of n, a(n) for n = 0..200</a>

%H P. Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry3/barry93.html">Continued fractions and transformations of integer sequences</a>, JIS 12 (2009) 09.7.6

%H Maciej Bendkowski, K Grygiel, P Tarau, <a href="http://arxiv.org/abs/1612.07682">Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers</a>, arXiv preprint arXiv:1612.07682, 2016

%H K. Grygiel, P. Lescanne, <a href="http://dx.doi.org/10.1007/978-3-662-49192-8_15">A natural counting of lambda terms</a>, SOFSEM 2016. <a href="http://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/natural_counting.pdf">Preprint 2015</a>

%F G.f.: A(x) = 1/(1-x)^2 + x^2*A(x)^2.

%F a(n)=sum{k=0..floor((n+1)/2), binomial(n+1, 2k+1)binomial(2k, k)/(k+1)} - _Paul Barry_, Nov 29 2004

%F a(n) = n + 1 + sum_k a(k-1)a(n-k-1), starting from a(n)=0 for n negative. - _Henry Bottomley_, Feb 22 2005

%F a(n)=sum{k=0..n, sum{j=0..n-k, C(j)C(n-k, 2j)}}; - _Paul Barry_, Aug 19 2005

%F G.f.: c(x^2/(1-x)^2)/(1-x)^2, c(x) the g.f. of A000108; a(n)=sum{k=0..floor(n/2), C(n+1,n-2k)C(k)}; - _Paul Barry_, May 31 2006

%F Binomial transform of doubled Catalan sequence 1,1,1,1,2,2,5,5,14,14,... - _Paul Barry_, Nov 17 2005

%F Row sums of Pascal-Catalan triangle A086617. - _Paul Barry_, Nov 17 2005

%F g(z)=(1-z-sqrt(1-2z-3z^2))/(2z-2z^2)/z - Charles Moore (chamoore(AT)howard.edu), Apr 15 2007, corrected by _Vaclav Kotesovec_, Feb 13 2014

%F Conjecture: (n+2)*a(n) +3*(-n-1)*a(n-1) +(-n+4)*a(n-2) +3*(n-1)*a(n-3)=0. - _R. J. Mathar_, Nov 30 2012

%F a(n) ~ 3^(n+5/2) / (4 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Feb 13 2014

%e a(0)=1, a(1)=2, a(2)=3+1=4, a(3)=4+4=8, a(4)=5+10+2=17, a(5)=6+20+12=38, are upward antidiagonal sums of triangle A086614:

%e {1},

%e {2,1},

%e {3,4,2},

%e {4,10,12,5},

%e {5,20,42,40,14},

%e {6,35,112,180,140,42}, ...

%e For example with n=2, the 5 ordered trees (A000108) on 3 edges are

%e |...|..../\.../\.../|\..

%e |../.\..|......|........

%e |.......................

%e Suppressing nonroot vertices of outdegree 1 (branch-reducing) yields

%e |...|..../\.../\../|\..

%e .../.\.................

%e of which 4 are distinct. So a(2)=4.

%e a(4)=8 because we have HHHH, HHUD, HUDH, HUHD

%t CoefficientList[Series[(1-x-Sqrt[1-2*x-3*x^2])/(2*x-2*x^2)/x, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Feb 13 2014 *)

%Y Cf. A086614 (triangle), A086616 (row sums).

%Y Cf. A001006.

%Y Cf. A136788.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jul 24 2003

%E Edited by _N. J. A. Sloane_, Oct 16 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 23:39 EDT 2018. Contains 316405 sequences. (Running on oeis4.)