login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086594 a(n) = 8*a(n-1) + a(n-2), starting with a(0)=2 and a(1)=8. 5
2, 8, 66, 536, 4354, 35368, 287298, 2333752, 18957314, 153992264, 1250895426, 10161155672, 82540140802, 670482282088, 5446398397506, 44241669462136, 359379754094594, 2919279702218888, 23713617371845698, 192628218676984472, 1564739366787721474 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n+1)/a(n) converges to 4 + sqrt(17).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)

Index entries for linear recurrences with constant coefficients, signature (8,1).

FORMULA

a(n) = (4+sqrt(17))^n+(4-sqrt(17))^n.

O.g.f: 2*(-1+4*x)/(-1+8*x+x^2) . - R. J. Mathar, Dec 02 2007

a(n) = 2*A088317(n). - R. J. Mathar, Sep 27 2014

EXAMPLE

a(4) = 8*a(3)+a(2) = 8*536+66 = 4354.

MATHEMATICA

LinearRecurrence[{8, 1}, {2, 8}, 30] (* Harvey P. Dale, Sep 21 2014 *)

RecurrenceTable[{a[0] == 2, a[1] == 8, a[n] == 8 a[n-1] + a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Sep 19 2016 *)

PROG

(MAGMA) I:=[2, 8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 19 2016

CROSSREFS

Cf. A003285.

Sequence in context: A011836 A100623 A231280 * A132219 A226730 A202553

Adjacent sequences:  A086591 A086592 A086593 * A086595 A086596 A086597

KEYWORD

nonn,easy

AUTHOR

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 11 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 12:43 EST 2017. Contains 295001 sequences.