login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086570 Expansion of (1 + 3x + 5x^2 + 7x^3...) / (1 - 2x + 3x^2 - 4x^3...). 4
1, 5, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums of number triangle A113128. - Paul Barry, Oct 14 2005

The Engel expansion of 1 + exp(1/8)*sqrt(2*Pi)*erf(1/(2*sqrt(2)))/5 = 1.2175306077808... - Benedict W. J. Irwin, Dec 16 2016

LINKS

Table of n, a(n) for n=0..54.

Index entries for linear recurrences with constant coefficients, signature (2,-1).

FORMULA

a(0) = 1, a(1) = 5, a(2) = 12; then a(n+1) = a(n) + 8, n>2.

G.f.: (1+x)^3/(1-x)^2; a(n)=8n-4+4*C(0, n)+C(1, n); a(n)=C(n+1, n)+3*C(n, n-1)+3*C(n-1, n-2)+C(n-2, n-3); - Paul Barry, Oct 14 2005

a(n) = A017113(n-1), n>1. - R. J. Mathar, Sep 12 2008

EXAMPLE

a(6) = 44 = 8 + a(5) = 8 + 36

MATHEMATICA

CoefficientList[Series[(z^3 + 3*z^2 + 3*z + 1)/(z - 1)^2, {z, 0, 100}], z] (* and *) Join[{1, 5}, Table[4*(2*(n + 1) + 1), {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *)

PROG

(PARI) a(n)=if(n>1, 8*n-4, 4*n+1) \\ Charles R Greathouse IV, Dec 16 2016

CROSSREFS

Sequence in context: A139692 A099192 A047077 * A270333 A270938 A270079

Adjacent sequences:  A086567 A086568 A086569 * A086571 A086572 A086573

KEYWORD

nonn,easy

AUTHOR

Gary W. Adamson, Jul 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 18:10 EDT 2017. Contains 289671 sequences.