login
Number of non-commuting permutations: number of ordered pairs g, h in Symm(n) such that gh <> hg, i.e., the subgroup <g,h> is non-Abelian.
0

%I #9 Jul 29 2017 13:30:00

%S 0,0,18,456,13560,510480,25326000,1624815360,131671008000,

%T 13168037030400,1593348686899200,229442495919436800,

%U 38775787414703539200,7600054444782928128000,1710012252494048735232000

%N Number of non-commuting permutations: number of ordered pairs g, h in Symm(n) such that gh <> hg, i.e., the subgroup <g,h> is non-Abelian.

%F a(n) = n!^2 - A053529(n) = n! * ( n! - p(n) ) where p(n) is the number of partitions of n (A000041).

%Y Cf. A000041, A053529.

%K nonn

%O 1,3

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 09 2003

%E More terms from _Ray Chandler_, Sep 17 2003