The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086397 Numerators of the rational convergents to sqrt(2) if both numerators and denominators are primes. 4


%S 3,7,41,63018038201,19175002942688032928599

%N Numerators of the rational convergents to sqrt(2) if both numerators and denominators are primes.

%C Next term, if it exists, is bigger than 489 digits (the 1279th convergent to sqrt(2)). - _Joshua Zucker_, May 08 2006

%C Are the terms >= 7 the primes in A183064? Is this a subsequence of A088165? - _R. J. Mathar_, Aug 16 2019

%H Andrej Dujella, Mirela Jukić Bokun, Ivan Soldo, <a href="https://arxiv.org/abs/1706.01959">A Pellian equation with primes and applications to D(-1)-quadruples</a>, arXiv:1706.01959 [math.NT], 2017.

%t For[n = 2, n < 1500, n++, a := Join[{1}, Table[2, {i, 2, n}]]; If[PrimeQ[Denominator[FromContinuedFraction[a]]], If[PrimeQ[Numerator[FromContinuedFraction[a]]], Print[Numerator[FromContinuedFraction[a]]]]]] (* _Stefan Steinerberger_, May 09 2006 *)

%o (PARI) cfracnumdenomprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer)&&ispseudoprime(denom), print1(numer",");numer2=numer;denom2=denom); ) default(realprecision,28); }

%Y Denominators are A118612.

%K frac,more,nonn

%O 1,1

%A _Cino Hilliard_, Sep 06 2003

%E More terms from _Cino Hilliard_, Jan 15 2005

%E Edited by _N. J. A. Sloane_, Aug 06 2009 at the suggestion of _R. J. Mathar_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 07:25 EST 2020. Contains 338632 sequences. (Running on oeis4.)