The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086395 Primes found among the numerators of the continued fraction rational approximations to sqrt(2). 7
 3, 7, 17, 41, 239, 577, 665857, 9369319, 63018038201, 489133282872437279, 19175002942688032928599, 123426017006182806728593424683999798008235734137469123231828679 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Or, starting with the fraction 1/1, the prime numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and twice bottom to get the new top. Or, A001333(n) is prime. The transformation of fractions is 1/1 -> 3/2 -> 7/5 -> 17/12 -> 41/29 -> ... where the numerators are A001333. - R. J. Mathar, Aug 18 2008 Is this sequence infinite? REFERENCES Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p 16. LINKS G. C. Greubel, Table of n, a(n) for n = 1..18 FORMULA Given c(0)=1, b(0)=1 then for i=1, 2, .. c(i)/b(i) = (c(i-1)+2*b(i-1)) /(c(i-1) + b(i-1)). MATHEMATICA Select[Numerator[Convergents[Sqrt[2], 250]], PrimeQ] (* Harvey P. Dale, Oct 19 2011 *) PROG (PARI) \Continued fraction rational approximation of numeric constants f. m=steps. cfracnumprime(m, f) = { default(realprecision, 3000); cf = vector(m+10); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(numer), print1(numer, ", ")); ) } (PARI) primenum(n, k, typ) = \yp = 1 num, 2 denom. print only prime num or denom. { local(a, b, x, tmp, v); a=1; b=1; for(x=1, n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1, v=a, v=b); if(isprime(v), print1(v", "); ) ); print(); print(a/b+.) } CROSSREFS Cf. A001333, A086383. Sequence in context: A058351 A244782 A175094 * A020730 A003440 A244455 Adjacent sequences:  A086392 A086393 A086394 * A086396 A086397 A086398 KEYWORD nonn AUTHOR Cino Hilliard, Sep 06 2003, Jul 30 2004, Oct 02 2005 EXTENSIONS Edited by N. J. A. Sloane, Aug 23 2008 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 03:20 EST 2020. Contains 338632 sequences. (Running on oeis4.)