

A086358


Digital root of n!.


3



1, 1, 2, 6, 6, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

a(n) = 9 for n >= 6.


LINKS

Table of n, a(n) for n=0..105.


FORMULA

a(n) = A010888(n!) = fixedpoint of A007953(n!). It equals n! modulo(9); at r = 0 use 9.


EXAMPLE

n=5, 5!=120, iteration list={120,3},a(5)=3.


MATHEMATICA

sud[x_] := Apply[Plus, DeleteCases[IntegerDigits[x], 0]] Table[FixedPoint[sud, w! ], {w, 1, 128}]


CROSSREFS

Cf. A000142, A086353A086361, A007953, A010888, A038194, A029898, A004152.
Sequence in context: A153845 A105815 A136696 * A004152 A071678 A316164
Adjacent sequences: A086355 A086356 A086357 * A086359 A086360 A086361


KEYWORD

nonn,base,easy


AUTHOR

Labos Elemer, Jul 21 2003


EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Dec 05 2018


STATUS

approved



