login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).
42

%I #58 Feb 20 2023 07:56:47

%S 1,2,7,43,393,4721,69853,1225757,24866481,572410513,14738647221,

%T 419682895325,13094075689225,444198818128313,16278315877572141,

%U 640854237634448101,26973655480577228769,1208724395795734172705,57453178877303382607717,2887169565412587866031533

%N Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).

%C Binomial transform of A000312. - _Tilman Neumann_, Dec 13 2008

%C a(n) is the number of partial functions on {1,2,...,n} that are endofunctions. See comments in A000169 and A126285 by _Franklin T. Adams-Watters_. - _Geoffrey Critzer_, Dec 19 2011

%H Winston de Greef, <a href="/A086331/b086331.txt">Table of n, a(n) for n = 0..385</a> (first 201 terms from Vincenzo Librandi)

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Interesting asymptotic formulas for binomial sums</a>, Jun 09 2013

%F a(n) = Sum_{k=0..n} binomial(n,k)*k^k.

%F a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - _Vaclav Kotesovec_, Nov 27 2012

%F G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - _Seiichi Manyama_, Jul 04 2022

%e a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.

%p a:= n-> add(binomial(n,k)*k^k, k=0..n):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 30 2021

%t nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x] (* _Geoffrey Critzer_, Dec 19 2011 *)

%o (PARI) a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ _Joerg Arndt_, May 10 2013

%o (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ _Seiichi Manyama_, Jul 04 2022

%o (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ _Seiichi Manyama_, Jul 04 2022

%Y Cf. A069856, A204042, A277454, A277456, A323280.

%K nonn

%O 0,2

%A _Vladeta Jovovic_, Sep 01 2003