login
A086326
Markoff numbers (A002559) multiplied by 3.
0
3, 6, 15, 39, 87, 102, 267, 507, 582, 699, 1299, 1830, 2955, 3975, 4791, 8691, 12543, 17223, 19398, 22683, 27231, 32838, 44103, 85971, 100383, 112998, 129783, 154923, 186630, 225075, 289671, 405411, 585075, 589254, 884055, 1279167, 1498179, 1542687, 1938054, 2777295, 3410067, 3836454
OFFSET
1,1
COMMENTS
Numbers n such that the Diophantine equation x^2+y^2+z^2 = x*y*z = n can be solved.
A list of x′s in nondecreasing order over all solutions of x^2+y^2+z^2 = x*y*z, with x >= y >= z.
x,y,z is a solution of x^2+y^2+z^2 = 3x*y*z if and only if 3x,3y,3z is a solution of x^2+y^2+z^2 = x*y*z.
EXAMPLE
a(1)=1,a(2)=6,a(3)=15, for (3,3,3), (6,3,3) and (15,6,3) are solutions of x^2+y^2+z^2=x*y*z.
CROSSREFS
Sequence in context: A279374 A087124 A327647 * A098701 A218777 A152799
KEYWORD
nonn
AUTHOR
Antoine Verroken (antoine.verroken(AT)pandora.be), Aug 27 2003
STATUS
approved