|
|
A086308
|
|
Decimal expansion of Otter's asymptotic constant beta for the number of unrooted trees.
|
|
7
|
|
|
5, 3, 4, 9, 4, 9, 6, 0, 6, 1, 4, 2, 3, 0, 7, 0, 1, 4, 5, 5, 0, 3, 7, 9, 7, 1, 1, 0, 5, 2, 0, 6, 8, 3, 9, 8, 1, 4, 3, 1, 1, 6, 5, 1, 4, 0, 5, 6, 9, 9, 0, 0, 9, 3, 9, 7, 7, 0, 7, 6, 8, 1, 0, 2, 3, 7, 5, 2, 3, 2, 1, 7, 8, 8, 0, 6, 4, 0, 6, 7, 2, 3, 9, 7, 8, 3, 2, 6, 2, 2, 4, 1, 8, 5, 9, 1, 1, 0, 4, 4, 4, 6, 6, 9, 3, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
A000055(n) ~ 0.5349496061 * alpha^n * n^(-5/2), where alpha = 2.95576528565199497... (see A051491). - Vaclav Kotesovec, Jan 04 2013
|
|
REFERENCES
|
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p. 296.
|
|
LINKS
|
Table of n, a(n) for n=0..105.
Eric Weisstein's World of Mathematics, Tree
|
|
EXAMPLE
|
0.53494960614230701455037971105206839814311651405699...
|
|
MATHEMATICA
|
digits = 86; max = 250; s[n_, k_] := s[n, k] = a[n+1-k] + If[n < 2*k, 0, s[n-k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[k]*s[n-1, k]*k, {k, 1, n-1}]/(n-1); A[x_] := Sum[a[k]*x^k, {k, 0, max}]; APrime[x_] := Sum[k*a[k]*x^(k-1), {k, 0, max}]; eq = Log[c] == 1 + Sum[A[c^-k]/k, {k, 2, max}]; alpha = c /. FindRoot[eq, {c, 3}, WorkingPrecision -> digits+5]; b = Sqrt[(1+Sum[APrime[alpha^-k]/alpha^k, {k, 2, max}])/(2*Pi)]; beta = 2*Pi*b^3; RealDigits[beta, 10, digits] // First (* Jean-François Alcover, Sep 24 2014 *)
|
|
CROSSREFS
|
Cf. A000055, A000081, A051491, A187770.
Sequence in context: A109681 A196406 A070367 * A229943 A198132 A117967
Adjacent sequences: A086305 A086306 A086307 * A086309 A086310 A086311
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Eric W. Weisstein, Jul 15 2003
|
|
EXTENSIONS
|
Corrected and extended by Vaclav Kotesovec, Jan 04 2013
More terms from Vaclav Kotesovec, Jun 20 2013 and Dec 26 2020
|
|
STATUS
|
approved
|
|
|
|