%I
%S 1151,1193,1319,1373,1511,1733,1913,1931,1973,2003,3119,3137,3191,
%T 3371,3559,3719,3779,3797,3911,3917,5953,7193,7331,7793,7937,9137,
%U 9173,9311,9371,9377,10111,11113,11119,11131,11311,11551,13313,13913,15511,19139,19319
%N Primes with at least four digits such that sum of any three_neighbor_digits is prime; first and last digits are neighbors.
%C Because 3digit terms coincide with additive 3dimensional primes A046713, it is interesting to start with 4digit primes. All of them may use only zero and odd digits, with the unique exclusion 2003 with one even digit. Primes such that sum of any two_neighbor_digits is prime A086244.
%H Alois P. Heinz, <a href="/A086259/b086259.txt">Table of n, a(n) for n = 1..10000</a>
%H Zak Seidov, <a href="http://groups.yahoo.com/group/primenumbers/message/12962">Prime sum of three neighbor digits</a>.
%H Zak Seidov, <a href="/A086259/a086259.txt">Prime sum of three neighbor digits</a>, message 12962 in primenumbers Yahoo group, Jul 14, 2003. [Cached copy]
%e 1973 is a term because 1+9+7=17, 9+7+3=19, 7+3+1=11 and 3+1+9=13 are all prime.
%Y Cf. A086244, A046713.
%K nonn,base
%O 1,1
%A _Zak Seidov_, Jul 26 2003
%E More terms from _Alois P. Heinz_, May 10 2016
