This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086223 Every integer can be represented uniquely as m = k*2^(j+1)+2^j-1. Sequence gives values of k for m = repunit(n). 1
 0, 1, 3, 69, 694, 6944, 69444, 694444, 6944444, 69444444, 694444444, 6944444444, 69444444444, 694444444444, 6944444444444, 69444444444444, 694444444444444, 6944444444444444, 69444444444444444, 694444444444444444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS j = A007814(m+1). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (11,-10). FORMULA a(n) = A025480(A002275(n)). G.f.: -x^2*(35*x^3-46*x^2+8*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Apr 29 2015 a(n) = (125*10^(n-3)-8)/18 for n >= 4. - Robert Israel, Apr 29 2015 a(n) = 11*a(n-1)-10*a(n-2) for n>5. EXAMPLE 1 = 0*4+1; 11 = 1*8+3; 111 = 3*32+15. For n > 3, repunit(n) = [69*10^(n-4)+(10^(n-4)-1)*4/9]*16+7. MATHEMATICA CoefficientList[Series[x (35 x^3 - 46 x^2 + 8 x - 1)/((1 - x)(10 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 30 2015 *) PROG (PARI) concat(0, Vec(-x^2*(35*x^3-46*x^2+8*x-1)/((x-1)*(10*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2015 (MAGMA) [0, 1, 3] cat [(125*10^(n-3)-8)/18: n in [4..25]]; // Vincenzo Librandi, Apr 30 2015 CROSSREFS Cf. A002275, A007814, A025480. Sequence in context: A166835 A166806 A219070 * A089455 A012201 A284058 Adjacent sequences:  A086220 A086221 A086222 * A086224 A086225 A086226 KEYWORD nonn,easy AUTHOR Marco Matosic, Jul 27 2003 EXTENSIONS Edited and extended by David Wasserman, Feb 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.