login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086223 Every integer can be represented uniquely as m = k*2^(j+1)+2^j-1. Sequence gives values of k for m = repunit(n). 1
0, 1, 3, 69, 694, 6944, 69444, 694444, 6944444, 69444444, 694444444, 6944444444, 69444444444, 694444444444, 6944444444444, 69444444444444, 694444444444444, 6944444444444444, 69444444444444444, 694444444444444444 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

j = A007814(m+1).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (11,-10).

FORMULA

a(n) = A025480(A002275(n)).

G.f.: -x^2*(35*x^3-46*x^2+8*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Apr 29 2015

a(n) = (125*10^(n-3)-8)/18 for n >= 4. - Robert Israel, Apr 29 2015

a(n) = 11*a(n-1)-10*a(n-2) for n>5.

EXAMPLE

1 = 0*4+1; 11 = 1*8+3; 111 = 3*32+15.

For n > 3, repunit(n) = [69*10^(n-4)+(10^(n-4)-1)*4/9]*16+7.

MATHEMATICA

CoefficientList[Series[x (35 x^3 - 46 x^2 + 8 x - 1)/((1 - x)(10 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 30 2015 *)

PROG

(PARI) concat(0, Vec(-x^2*(35*x^3-46*x^2+8*x-1)/((x-1)*(10*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2015

(MAGMA) [0, 1, 3] cat [(125*10^(n-3)-8)/18: n in [4..25]]; // Vincenzo Librandi, Apr 30 2015

CROSSREFS

Cf. A002275, A007814, A025480.

Sequence in context: A166835 A166806 A219070 * A089455 A012201 A284058

Adjacent sequences:  A086220 A086221 A086222 * A086224 A086225 A086226

KEYWORD

nonn,easy

AUTHOR

Marco Matosic, Jul 27 2003

EXTENSIONS

Edited and extended by David Wasserman, Feb 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 12:58 EDT 2018. Contains 313917 sequences. (Running on oeis4.)