login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086223 Every integer can be represented uniquely as m = k*2^(j+1)+2^j-1. Sequence gives values of k for m = repunit(n). 1
0, 1, 3, 69, 694, 6944, 69444, 694444, 6944444, 69444444, 694444444, 6944444444, 69444444444, 694444444444, 6944444444444, 69444444444444, 694444444444444, 6944444444444444, 69444444444444444, 694444444444444444 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

j = A007814(m+1).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (11,-10).

FORMULA

a(n) = A025480(A002275(n)).

G.f.: -x^2*(35*x^3-46*x^2+8*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Apr 29 2015

a(n) = (125*10^(n-3)-8)/18 for n >= 4. - Robert Israel, Apr 29 2015

a(n) = 11*a(n-1)-10*a(n-2) for n>5.

EXAMPLE

1 = 0*4+1; 11 = 1*8+3; 111 = 3*32+15.

For n > 3, repunit(n) = [69*10^(n-4)+(10^(n-4)-1)*4/9]*16+7.

MATHEMATICA

CoefficientList[Series[x (35 x^3 - 46 x^2 + 8 x - 1)/((1 - x)(10 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 30 2015 *)

PROG

(PARI) concat(0, Vec(-x^2*(35*x^3-46*x^2+8*x-1)/((x-1)*(10*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2015

(MAGMA) [0, 1, 3] cat [(125*10^(n-3)-8)/18: n in [4..25]]; // Vincenzo Librandi, Apr 30 2015

CROSSREFS

Cf. A002275, A007814, A025480.

Sequence in context: A166835 A166806 A219070 * A089455 A012201 A284058

Adjacent sequences:  A086220 A086221 A086222 * A086224 A086225 A086226

KEYWORD

nonn,easy

AUTHOR

Marco Matosic, Jul 27 2003

EXTENSIONS

Edited and extended by David Wasserman, Feb 17 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 15:43 EST 2017. Contains 295905 sequences.