This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086223 Every integer can be represented uniquely as m = k*2^(j+1)+2^j-1. Sequence gives values of k for m = repunit(n). 1
 0, 1, 3, 69, 694, 6944, 69444, 694444, 6944444, 69444444, 694444444, 6944444444, 69444444444, 694444444444, 6944444444444, 69444444444444, 694444444444444, 6944444444444444, 69444444444444444, 694444444444444444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS j = A007814(m+1). LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (11,-10). FORMULA a(n) = A025480(A002275(n)). G.f.: -x^2*(35*x^3-46*x^2+8*x-1) / ((x-1)*(10*x-1)). - Colin Barker, Apr 29 2015 a(n) = (125*10^(n-3)-8)/18 for n >= 4. - Robert Israel, Apr 29 2015 a(n) = 11*a(n-1)-10*a(n-2) for n>5. EXAMPLE 1 = 0*4+1; 11 = 1*8+3; 111 = 3*32+15. For n > 3, repunit(n) = [69*10^(n-4)+(10^(n-4)-1)*4/9]*16+7. MATHEMATICA CoefficientList[Series[x (35 x^3 - 46 x^2 + 8 x - 1)/((1 - x)(10 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 30 2015 *) PROG (PARI) concat(0, Vec(-x^2*(35*x^3-46*x^2+8*x-1)/((x-1)*(10*x-1)) + O(x^100))) \\ Colin Barker, Apr 30 2015 (MAGMA) [0, 1, 3] cat [(125*10^(n-3)-8)/18: n in [4..25]]; // Vincenzo Librandi, Apr 30 2015 CROSSREFS Cf. A002275, A007814, A025480. Sequence in context: A166835 A166806 A219070 * A089455 A012201 A284058 Adjacent sequences:  A086220 A086221 A086222 * A086224 A086225 A086226 KEYWORD nonn,easy AUTHOR Marco Matosic, Jul 27 2003 EXTENSIONS Edited and extended by David Wasserman, Feb 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 12:58 EDT 2018. Contains 313917 sequences. (Running on oeis4.)