login
Sum of rank(M) over all n X n matrices over GF(3).
2

%I #8 Jul 08 2018 21:29:33

%S 0,2,128,50258,152583680,3848135499362,831635515536146048,

%T 1565118078583425627499058,25891049952879626239605534955520,

%U 3786985075909223206935197348611801222082,4916838220400668315060476949839366817233722142848

%N Sum of rank(M) over all n X n matrices over GF(3).

%F a(n) = Sum_{r=1..n} r*Product_{j=0..r-1} (q^n-q^j)^2/(q^r-q^j) with q=3.

%o (PARI) a(n)=sum(r=1,n, r*prod(j=0,(r-1),(3^n-3^j)^2/(3^r-3^j)))

%Y Cf. A086098.

%K nonn

%O 0,2

%A Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 26 2003

%E More terms from _Benoit Cloitre_, Aug 27 2003

%E a(10) from _Andrew Howroyd_, Jul 08 2018