The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086138 Number of primes between p and p+10 if p is prime, i.e., number of primes somewhere between 10+A023203(n) and A023203(n). 1
 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 0, 2, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE a(n)=0,1,2,3 correspond to {p,p+10} prime-pairs either consecutive ones or those with various d-patterns like as follows: a(n)=0 to cases like 139[10]149; a(n)=2 to 7[4,2,4]17 etc.; a(n)=3 to one case 3[2,2,4,2]13 and a(n)=2 to cases like 31[6,4]37 or 43[4,6]53. MATHEMATICA cp[x_, y_] := Count[Table[PrimeQ[i], {i, x, y}], True] Do[s=Prime[n]; s1=Prime[n+1]; If[PrimeQ[s+d], k=k+1; Print[cp[s+1, s+d-1]]], {n, 1, 1000}]; k; d=10 PROG (PARI) forprime(p=2, 1e5, if(isprime(p+10), print1(isprime(p+2)+isprime(p+4)+isprime(p+6)+isprime(p+8)", "))) \\ Charles R Greathouse IV, May 15 2013 CROSSREFS Cf. A023303, A031928, A031929. Sequence in context: A077450 A328330 A214878 * A170822 A054546 A065310 Adjacent sequences:  A086135 A086136 A086137 * A086139 A086140 A086141 KEYWORD nonn AUTHOR Labos Elemer, Jul 29 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 01:45 EST 2021. Contains 340443 sequences. (Running on oeis4.)