login
a(n) = Sum_{i=1..n} C(i+4,5)^3.
20

%I #26 Sep 08 2022 08:45:11

%S 1,217,9478,185094,2185470,18188478,116799606,613592694,2745339597,

%T 10769363605,37850444632,121189368664,358136205336,987118431768,

%U 2559344776920,6286103520984,14712254089533,32974344717237,71073599975686,147860902015750,297836101312750

%N a(n) = Sum_{i=1..n} C(i+4,5)^3.

%H G. C. Greubel, <a href="/A086026/b086026.txt">Table of n, a(n) for n = 1..5000</a>

%H <a href="/index/Rec#order_17">Index entries for linear recurrences with constant coefficients</a>, signature (17,-136,680,-2380,6188,-12376, 19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).

%F a(n) = C(n+5,6)^2*(1 + 279*C(n,1) + 681*C(n,2) + 504*C(n,3) + 126*C(n,4) )/280. - _Yahia Kahloune_, Dec 22 2013

%F -(n-1)^3*a(n) +(2*n+3)*(n^2+3*n+21)*a(n-1) -(n+4)^3*a(n-2)=0. - _R. J. Mathar_, Dec 22 2013

%F G.f.: -x*(x^10 +200*x^9 +5925*x^8 +52800*x^7 +182700*x^6 +273504*x^5 +182700*x^4 +52800*x^3 +5925*x^2 +200*x +1) / (x -1)^17. - _Colin Barker_, May 02 2014

%F a(n) = (n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14). - _G. C. Greubel_, Nov 22 2017

%e a(3) = C(8,6)^2*(1 + 279*C(3,1) + 681*C(3,2) + 504*C(3,3))/280 = 9478. - _Yahia Kahloune_, Dec 22 2013

%p A086026 := proc(n)

%p add( binomial(i+4,5)^3,i=1..n) ;

%p end proc:

%p seq(A086026(n),n=1..30) ; # _R. J. Mathar_, Dec 22 2013

%t Table[Sum[Binomial[i + 4, 5]^3, {i, n}], {n, 30}] (* _Wesley Ivan Hurt_, Dec 22 2013 *)

%o (PARI) a(n) = sum(i=1, n, binomial(i+4, 5)^3); \\ _Michel Marcus_, Dec 22 2013

%o (Magma) [(n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14): n in [1..30]]; // _G. C. Greubel_, Nov 22 2017

%Y Cf. A087127, A024166, A085438 - A085442, A086020 - A086030.

%K easy,nonn

%O 1,2

%A _André F. Labossière_, Jul 11 2003

%E More terms from _Michel Marcus_, Dec 22 2013