The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085992 Decimal expansion of the Riemann zeta prime modulo function at 3 for primes of the form 4k+3. 9
 0, 4, 1, 0, 0, 7, 5, 5, 6, 5, 6, 6, 4, 7, 3, 0, 3, 1, 9, 2, 8, 8, 8, 6, 5, 4, 8, 8, 5, 1, 9, 6, 0, 0, 2, 5, 9, 2, 4, 3, 0, 0, 0, 6, 0, 7, 0, 5, 7, 2, 3, 8, 1, 7, 4, 4, 8, 6, 4, 5, 6, 4, 1, 7, 1, 1, 7, 2, 2, 8, 7, 4, 4, 2, 8, 0, 7, 0, 6, 5, 7, 8, 3, 2, 1, 3, 7, 7, 3, 4, 9, 7, 4, 0, 8, 0, 0, 4, 8, 1, 3, 3, 9, 2, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS P. Flajolet and I. Vardi, Zeta Function Expansions of Classical Constants, Unpublished manuscript. 1996. P. Fortuny Ayuso, J. M. Grau, A. Oller-Marcen, A von Staudt-type formula for sum_{z in Z_n[i]} z^k, arXiv:1402.0333 (2014) X. Gourdon and P. Sebah, Some Constants from Number theory. R. J. Mathar, Table of Dirichlet L-series and.., arXiv:1008.2547, variable P(m=4,s=n=3), page 21. FORMULA Zeta_R(3) = Sum_{r prime=3 mod 4} 1/r^3 = (1/2)*Sum_{n=0..inf} mobius(2*n+1)*log(b((2*n+1)*3))/(2*n+1), where b(x)=(1-2^(-x))*zeta(x)/L(x) and L(x) is the Dirichlet Beta function. EXAMPLE 0.0410075565664730... MATHEMATICA b[x_] = (1 - 2^(-x))*(Zeta[x] / DirichletBeta[x]); \$MaxExtraPrecision = 200; m = 40; Prepend[ RealDigits[(1/2)* NSum[MoebiusMu[2n+1]* Log[b[(2n+1)*3]]/(2n+1), {n, 0, m}, AccuracyGoal -> 120, NSumTerms -> m, PrecisionGoal -> 120, WorkingPrecision -> 120] ][[1]], 0][[1 ;; 105]] (* Jean-François Alcover, Jun 21 2011, updated Mar 14 2018 *) CROSSREFS Cf. A085991. Sequence in context: A182878 A221971 A297785 * A117411 A161739 A291574 Adjacent sequences:  A085989 A085990 A085991 * A085993 A085994 A085995 KEYWORD cons,nonn AUTHOR Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 14:21 EDT 2020. Contains 334787 sequences. (Running on oeis4.)