login
A085974
Number of 0's in the decimal expansion of prime(n).
11
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,169
LINKS
EXAMPLE
prime(26) = 101, so a(26) = 1 and prime(1230) = 10007, so a(1230) = 3.
MATHEMATICA
DigitCount[Prime[Range[100]], 10, 0] (* Paolo Xausa, Oct 30 2023 *)
PROG
(Haskell)
a085974 = count0 0 . a000040 where
count0 c x | d == 0 = if x < 10 then c + 1 else count0 (c + 1) x'
| otherwise = if x < 10 then c else count0 c x'
where (x', d) = divMod x 10
-- Reinhard Zumkeller, Apr 08 2014
CROSSREFS
Cf. 1's A085975, 2's A085976, 3's A085977, 4's A085978, 5's A085979, 6's A085980, 7's A085981, 8's A085982, 9's A085983.
Cf. A055641.
Sequence in context: A277165 A011740 A354344 * A011739 A023975 A305821
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jul 06 2003
STATUS
approved