login
A085902
a(0) = 2, a(n) is the smallest squarefree number > a(n-1) such that the sum a(n) + a(i) for all i = 1 to (n-1) is squarefree. Or, sum of any two terms is a squarefree number.
4
2, 3, 11, 19, 55, 59, 83, 111, 127, 155, 163, 199, 203, 219, 263, 299, 307, 311, 371, 383, 399, 455, 515, 803, 883, 919, 983, 1063, 1499, 1559, 1927, 2019, 2063, 2183, 2215, 2271, 2359, 2503, 2703, 2755, 2999, 3459, 3899, 3927, 4271, 4303, 4411, 4519, 4559
OFFSET
0,1
COMMENTS
It can easily be proved that a(n) == 3 (mod 4) for all n > 2.
LINKS
MATHEMATICA
a[0] = 2; a[n_] := a[n] = Module[{t = Array[a, n, 0], k = a[n - 1] + 1}, While[! SquareFreeQ[k] || AnyTrue[t, ! SquareFreeQ[k + #] &], k++]; k]; Array[a, 100, 0] (* Amiram Eldar, Aug 21 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 09 2003
EXTENSIONS
More terms from Ray Chandler, Sep 13 2003
STATUS
approved