login
A085887
Let r and s be such that r + s = n; a(n) = minimum value of tau(r) + tau(s).
2
2, 3, 3, 4, 3, 4, 3, 4, 4, 5, 3, 4, 3, 4, 4, 5, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 6, 3, 4, 3, 4, 4, 5, 4, 6, 3, 4, 4, 5, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 6, 3, 4, 4, 5, 4, 5, 3, 4, 3, 4, 4, 5, 4, 6, 3, 4, 4, 5, 3, 4, 3, 4, 4, 5, 4, 6, 3, 4, 4, 5, 3, 4, 4, 5, 4, 6, 3, 4, 4, 5, 4, 5, 4, 6, 3, 4, 4, 5, 3, 4, 3, 4, 4
OFFSET
2,1
COMMENTS
a(p+1) = 3 if p is a prime. a(n) = 4 if n is the sum of two primes. For all even numbers > 4, a(n) = 4 by Goldbach's conjecture.
LINKS
EXAMPLE
a(8) = 3, the partitions are (1,7), (2,6), (3,5), (4,4) which give 3, 6, 4 and 6 as the sum of the number of divisors of both parts.
MATHEMATICA
Table[Min[Total/@DivisorSigma[0, IntegerPartitions[n, {2}]]], {n, 2, 120}] (* Harvey P. Dale, Mar 18 2023 *)
PROG
(PARI) A085887(n) = { my(m=0, k); for(r=1, n-1, if((m > k=(numdiv(r)+numdiv(n-r)))||!m, m = k)); m; }; \\ Antti Karttunen, Dec 14 2017
CROSSREFS
Cf. A085883.
Sequence in context: A096344 A030349 A285203 * A305716 A297616 A213251
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Jul 08 2003
EXTENSIONS
More terms from David Wasserman, Feb 10 2005
STATUS
approved