This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085866 a(1) = 3, a(n+1) = a(n)*phi(a(n)), where phi(n) is Euler's totient function. 2
 3, 6, 12, 48, 768, 196608, 12884901888, 55340232221128654848, 1020847100762815390390123822295304634368, 347376267711948586270712955026063723559809953996921692118372752023739388919808 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(1) = 1, a(n+1) = a(n) + phi(a(n)) gives A074693. For n > 1, a(n)/3 is 2^(2^(n-2)). This sequence is 2, 4, 16, 256, ..., which is phi(a(n-1)). The Harris 1935 problem is to show 1 + sqrt(13) = sqrt(12 + sqrt(48 + sqrt( 768 + ...))). - Michael Somos, Jun 18 2018 LINKS V. C. Harris, Problem 78, National Mathematics Magazine 9, no.6 (1935), p. 180. Dixon Jones, A chronology of continued square roots and other continued compositions, through the year 2016, arXiv:1707.06139, 2018. See bibliography item 80. FORMULA a(n) = 3*2^(2^(n-2)). EXAMPLE a(3) = 12 and phi(12)= 4, hence a(4) = 12*4 = 48. MATHEMATICA RecurrenceTable[{a[1]==3, a[n+1]==a[n] EulerPhi [a[n]]}, a, {n, 20}] (* Vincenzo Librandi, Jun 19 2018 * PROG (PARI) for(n=1, 11, if(n==1, a=3, a*=eulerphi(a)); print1(a, ", "); ) (MAGMA) [3] cat [3*2^(2^(n-2)): n in [2..11]]; // Vincenzo Librandi, Jun 19 2018 CROSSREFS Cf. A074693, A085864, A085865. Cf. A000010, A000215. Sequence in context: A136121 A023369 A129380 * A282231 A301522 A139416 Adjacent sequences:  A085863 A085864 A085865 * A085867 A085868 A085869 KEYWORD nonn AUTHOR Amarnath Murthy, Jul 06 2003 EXTENSIONS More terms from Ray Chandler, Jul 16 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 06:54 EDT 2018. Contains 313909 sequences. (Running on oeis4.)