login
A085775
Numbers k such that (k / sum of digits of k) and (k+1 / sum of digits of k+1) are both prime.
7
152, 803, 1016, 1853, 3031, 3032, 3438, 7361, 7542, 7587, 8226, 8337, 10095, 10278, 10307, 11354, 11646, 13116, 13117, 13881, 17153, 21434, 21906, 23412, 26221, 28824, 30254, 31112, 32166, 34218, 35513, 38322, 40335, 41058, 44373, 45380
OFFSET
1,1
LINKS
EXAMPLE
152 is a term since 152/(1+5+2) = 19 and 153/(1+5+3) = 17 are both prime.
MATHEMATICA
moranQ[n_] := PrimeQ[n / Plus @@ IntegerDigits[n]]; Select[Range[50000], moranQ[#] && moranQ[#+1] &] (* Amiram Eldar, Apr 25 2020 *)
CROSSREFS
Subsequence of A001101 and A330927.
Sequence in context: A259740 A253359 A226365 * A208492 A208485 A364815
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jul 23 2003
EXTENSIONS
Offset corrected by Amiram Eldar, Apr 25 2020
STATUS
approved