login
Largest prime p for which every solution of the congruence x^n + y^n == z^n (mod p) is such that p divides x*y*z.
0

%I #12 Oct 21 2022 20:22:15

%S 3,5,17,61,317,1951,13697,109597,986411,9864091,108505097,1302061337,

%T 16926797467,236975164793,3554627472059,56874039553189,

%U 966858672404659,17403456103284379,330665665962403997,6613313319248079991

%N Largest prime p for which every solution of the congruence x^n + y^n == z^n (mod p) is such that p divides x*y*z.

%D W. J. LeVeque, Fundamentals of Number Theory, pp. 94-95 Dover NY 1996.

%F a(n) is the largest prime < n!*e + 1.

%K nonn

%O 1,1

%A _Lekraj Beedassy_, Jul 21 2003

%E More terms from _Ray Chandler_, Nov 08 2003