

A085694


Let f(0) = 1, f(1) = 12, f(2) = 223, f(3) = 3334, f(4) = 44445, f(5) = 555556, etc. Sequence gives limiting value of f(0), f(f(0)), f(f(f(0))), ...


1



1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 5, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 5, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The positions where 1, 2, 3, 4, 5, . . . appear are 1, 2, 5, 15, 52, . . . (Bell numbers A000110).


LINKS

Table of n, a(n) for n=1..99.


CROSSREFS

Cf. A085693, A000110, A048993 = the number of occurrences of k in nth block.
Sequence in context: A103507 A219252 A290839 * A258570 A257572 A160493
Adjacent sequences: A085691 A085692 A085693 * A085695 A085696 A085697


KEYWORD

nonn,easy


AUTHOR

Philippe Deléham, Aug 14, 2003; extended Jun 10 2005


STATUS

approved



