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Abstract

We prove the conjecture by Vladeta Jovovic on the sequence A085642
in Sloane’s On-Line Encyclopedia of Integer Sequences.

1 Introduction

In the sequence A085642 in Sloane’s On-Line Encyclopedia of Integer Se-
quences [7]

0,1,1,2,3,6,8,12,17,26,35,49,66,92,121, ....
the nth number a(n) counts the number of columns in the character table
of the symmetric group Sn that have zero sums; it was submitted 2003 by
Yuval Dekel. As stated in the comments to the sequence, shortly afterwards
Vladeta Jovovic made the

Conjecture The number a(n) equals the number of partitions of n with at
least one part congruent to 2 mod 4.

In this note, we prove this conjecture.
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2 A little bit of character theory

We refer to [4], [6] for details about partitions and about characters of the
symmetric group Sn.
Consider a partition λ = (λ1, λ2, . . . , λl) of the integer n. Thus λ1 ≥ λ2 ≥
. . . ≥ λl > 0 and λ1 + λ2 + . . . + λl = n; for short, we write λ ` n. We call
the λi’s the parts of λ. Moreover for i ≥ 1, mi = mi(λ) denotes the number
of parts equal to i in λ.
The set of all partitions of n will be denoted by P (n).
We recall that the conjugacy classes of Sn are labelled by partitions, which
correspond to the cycle type of the elements in the conjugacy class.
We denote the cycle type of σ ∈ Sn by c(σ).

We will also need some character-theoretic results; we refer to [3, Chapter 4]
or [2] for details.
For a finite group G we denote by Irr(G) its set of irreducible complex char-
acters. For χ ∈ Irr(G) we define

ν2(χ) =
1

|G|
∑

g∈G

χ(g2) .

Theorem 2.1 [3, p. 58] (Frobenius-Schur) Let G be a finite group, χ ∈
Irr(G). Then ν2(χ) = 0, 1 or −1 if χ is non-real, real and the representa-
tion realizable over R, or real but the representation not realizable over R,
respectively.

For Sn, the following holds

Theorem 2.2 [4, sec. 3.4] Any χ ∈ Irr(Sn) comes from an integral repre-
sentation. In particular, ν2(χ) = 1 for all χ ∈ Irr(Sn).

For a finite group G, let ψ2 : G→ Z be defined by

ψ2(g) = |{h ∈ G | h2 = g}| ,
i.e., ψ2(g) counts the number of square roots of g in G.
Clearly, ψ2 is a class function on G.

Theorem 2.3 [3] Let G be a finite group. Then

ψ2 =
∑

χ∈Irr(G)

ν2(χ)χ .
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Hence we deduce

Corollary 2.4 Let n ∈ N. Then for Sn we have

ψ2 =
∑

χ∈Irr(Sn)

χ .

Corollary 2.5 Let n ∈ N, σ ∈ Sn. Then the column of the character table
of Sn labelled by c(σ) sums to

∑

χ∈Irr(Sn)

χ(σ) = |{τ ∈ Sn | τ 2 = σ}| .

Hence the columns counted by a(n) of our sequence correspond to the con-
jugacy classes of non-squares in Sn.

Remark. See also [8], solution to problem 7.69 (b), or [5, Ex. 11, p. 120] for
this connection between the column sums and the counting of square roots.

3 A little bit of combinatorics

Let’s look at an element τ of cycle type µ = (1m1 , 2m2, . . .). This squares to
the element σ = τ 2 of cycle type λ = (1m1+2m2 , 22m4 , 3m3+2m6 . . .). Hence we
have

Lemma 3.1 The partition λ is the cycle type of a non-square if and only if
some even part of λ has odd multiplicity.

Thus we have the following combinatorial description of a(n):

Corollary 3.2 Let n ∈ N. Then

a(n) = |{λ ` n | ∃i : m2i(λ) is odd}| .

Next we show that the set on the right hand side is in bijection with the
partitions appearing in the Conjecture.

We want to define an involution on the set of partitions which is motivated
by the Glaisher map. First, we write our partitions in a different way.
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Instead of writing the parts of λ with their multiplicity (as in the exponential
notation for partitions) we collect this information in suitable triples accord-
ing to the 2-adic decomposition of multiplicities and the 2-power in the parts.
Assume b occurs in λ with multiplicity m written in 2-adic decomposition as
m =

∑
k∈I 2εk, with different exponents εk. Write b = 2ja with a odd. Then

we turn the m parts b into the set of triples (2j, a, 2εk), with k ∈ I. Doing
this for all parts gives us a set Λ of triples which is just another notation for
the partition λ.
We now define a map Γ on P (n) by using this notation. Given λ ∈ P (n),
let Γ act on Λ by switching all 2-powers in the triple, i.e., Γ(Λ) is the set of
all triples (2k, a, 2j) with (2j, a, 2k) ∈ Λ. Clearly, this is an involution on P (n).

Proposition 3.3 The restriction of Γ provides a bijection between the set of
partitions of n having an odd part and the set of partitions of n where some
part has odd multiplicity, respectively.

Proof. For λ of the first type, there is a triple (1, a, 2k) ∈ Λ. Hence
(2k, a, 1) ∈ Γ(Λ), which immediately implies that 2ka occurs with odd mul-
tiplicity in Γ(λ). The converse is also clear. �

Remark 3.4 The restriction of Γ to the set of partitions with odd parts
only gives the Glaisher bijection to the set of partitions into distinct parts.

Given m ∈ N0, we now define a slight variation Θm of Γ. For λ ∈ P (n), all
parts not divisible by 2m are fixed by Θm, but for a part b = 2j+ma (with
a odd, as before) we now write the corresponding triples as (2j, 2ma, 2k)
(instead of (2j+m, a, 2k)). Then we let Θm switch the 2-powers of triples with
middle component 2ma. Again, this is clearly an involution on P (n).
For r ∈ N, let 2ν2(r) be the largest 2-power dividing r. Then we have:

Proposition 3.5 The restriction of Θm provides a bijection between the set
of partitions of n having a part s with ν2(s) = m and the set of partitions
of n where some part t with ν2(t) ≥ m has odd multiplicity, respectively.

Proof. Partitions of the first type are those with a triple of the form
(1, 2ma, 2k), partitions of the second type are those with a triple (2j, 2ma, 1). �
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Of course, the restriction of Θ1 (as above) is just the bijection needed in our
context, hence we have

Corollary 3.6 Jovovic’ Conjecture is true.

An alternative proof is easily obtained by computing generating functions of
the number of partitions in the complementary sets.
Let

b1(n) = |{λ ` n | ∀i ∈ N0 : m4i+2(λ) = 0}|
b2(n) = |{λ ` n | ∀i ∈ N : m2i(λ) is even}| .

Both these functions have as generating function the product

R(q) =
∞∏

i=0

1

1− q2i+1

∞∏

i=1

1

1− q4i
.

Indeed in the well-known expression for the generating function P (q) for the
partition function p(n)

P (q) =

∞∏

i=1

1

1− qi

the factor 1
1−qi accounts for the multiplicity of i in the partitions (see e.g. [1,

p.4]). Therefore R(q) is clearly the generating function for b1(n). Also

∞∏

i=1

1

1− (qi)2

counts partitions where all parts have even multiplicity and thus

∞∏

i=1

1

1− (q2i)2

counts partitions where all parts are even and have even multiplicity. Rewrit-
ing

∞∏

i=1

1

1− q4i
=

∞∏

i=1

1

1− (q2i)2

we see that R(q) is also the generating function for b2(n). Thus b1(n) = b2(n)
for all n ≥ 0.
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