The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A085528 a(n) = (2*n+1)^(n+1). 5
 1, 9, 125, 2401, 59049, 1771561, 62748517, 2562890625, 118587876497, 6131066257801, 350277500542221, 21914624432020321, 1490116119384765625, 109418989131512359209, 8629188747598184440949, 727423121747185263828481, 65273511648264442971824673 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of polynomials of degree at most n with integer coefficients all having absolute value <= n. a(n-1) is the number of nodes in the canonical automaton for the affine Weyl group of type D_n. - Tom Edgar, May 12 2016 REFERENCES Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 FORMULA From Peter Bala, Aug 06 2012: (Start) E.g.f.: d/dx{(2*x/T(2*x))^(1/2)*1/(1 - T(2*x))} = 1 + 9*x + 125*x^2/2! + ..., where T(x) is the tree function sum {n >= 1} n^(n-1)*x^n/n! of A000169. For r = 0, 1, 2, ... the e.g.f. for the sequence (2*n+1)^(n+r) can be expressed in terms of the function U(z) = sum {n >= 0} (2*n+1)^(n-1)*z^(2*n+1)/(2^n*n!). See A214406 for details. In the present case, r = 1, and the resulting e.g.f. is 1/z*U(z)*(1 + U(z)^2 )/(1 - U(z)^2)^3 taken at z = sqrt(2*x). (End) MAPLE seq((2*n+1)^(n+1), n=0..20); # G. C. Greubel, Sep 03 2019 MATHEMATICA Table[(2*n+1)^(n+1), {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Sep 05 2009, modified by G. C. Greubel, Sep 03 2019 *) PROG (MAGMA) [(2*n+1)^(n+1): n in [0..20]]; // Vincenzo Librandi, May 04 2011 (PARI) vector(20, n, (2*n-1)^n) \\ G. C. Greubel, Sep 03 2019 (Sage) [(2*n+1)^(n+1) for n in (0..20)] # G. C. Greubel, Sep 03 2019 (GAP) List([0..20], n-> (2*n+1)^(n+1)); # G. C. Greubel, Sep 03 2019 CROSSREFS Cf. A000169, A085527, A099753, A214406. Sequence in context: A138438 A320646 A241709 * A192724 A078422 A291897 Adjacent sequences:  A085525 A085526 A085527 * A085529 A085530 A085531 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Jul 05 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 04:06 EDT 2020. Contains 337441 sequences. (Running on oeis4.)